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Abstract

When �tting wavelet based models� shrinkage of the empirical wavelet coe�cients is an e�ective

tool for de�noising the data� This paper outlines a Bayesian approach to shrinkage� obtained by

placing priors on the wavelet coe�cients� The prior for each coe�cient consists of a mixture of

two normal distributions with di�erent standard deviations� The simple and intuitive form of

prior allows us to propose automatic choices of prior parameters� These parameters are chosen

adaptively according to the resolution level of the coe�cients� typically shrinking high resolu�

tion 	frequency
 coe�cients more heavily� Assuming a good estimate of the background noise

level� we obtain closed form expressions for the posterior means and variances of the unknown

wavelet coe�cients� The latter may be used to assess uncertainty in the reconstruction� Several

examples are used to illustrate the method� and comparisons are made with other shrinkage

methods�

Key Words� Bayesian Estimation� Mixture Models� Uncertainty Bands�

� Introduction

Wavelets have been found to provide an e�ective model for data of the form y � f 
 z� when

f is a potentially complex� spatially inhomogeneous function� The essence of a wavelet based

model is a one�to�one transform of f into a space of wavelet coe�cients� The coe�cient space is

structured� roughly� according to the location and scale 	frequency
 of the functional information

contained in each coe�cient� Standard wavelet methods assume equally spaced measurements

of f with additive noise� and seek to �de�noise� the data by shrinking the empirical wavelet

coe�cients towards zero� When the reduced empirical coe�cients are then transformed back to

the data space� the reconstructed signal typically has much of the noise removed� See Donoho�

Johnstone� Kerkyacharian� and Picard 	����
� as well as DeVore and Lucier 	����
� For a more

basic introduction� see Nason and Silverman 	����
�
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Shrinkage of the empirical wavelet coe�cients works best in problems where the underlying

set of the true coe�cients of f is sparse� That is� the overwhelming majority of these coe�cients

are small� and the remaining few large coe�cients explain most of the functional form in f �

By shrinking the empirical coe�cients towards zero� the smaller ones 	which contain primarily

noise
 may be reduced to negligible levels� hence de�noising the signal�

One natural way to obtain shrinkage estimates of the true coe�cients is via Bayesian meth�

ods� In the Bayesian approach� a prior distribution is placed on each coe�cient� We propose

a particular prior distribution designed to capture the sparseness common to most wavelet ap�

plications� Some of the mass is concentrated on values close to zero� The rest of the mass is

spread to accommodate the possibility of large coe�cients� These heavy tailed priors give rise

to shrinkage functions which vary the amount of shrinkage according to the magnitude of the

coe�cient� Smaller coe�cients are essentially shrunk to zero� while larger coe�cients� which

contain more information� are shrunk less� We present automatic procedures for �xing the

prior parameters at each resolution level� resulting in level dependent shrinkage functions� The

adaptive nature of the procedure gives rise to its name� �Adaptive Bayesian Wavelet Shrink�

age� 	ABWS
� Alternatively� the intuitive meaning of each of the prior parameters means that

they may also be experimented with easily to adapt the degree of shrinkage and de�noising

subjectively�

We assume an accurate estimate of the noise level is available� and thus treat it as known�

This enables us to obtain closed form expressions for the posterior means and variances of the

true wavelet coe�cients� As a result� the reconstruction� along with uncertainty bounds� can

be computed quickly� However� there is a trade�o�� If the noise level can be well estimated

our approach has an appealing simplicity� If this is not the case� a more complete Bayesian

approach should capture the uncertainty about the noise level 	e�g� Clyde� Parmigiani� and

Vidakovic 	����
� Vidakovic 	����

�

The paper is organized as follows� In section �� the model and prior are outlined� and an
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example with a minimum of detail is given� to illustrate the potential of this approach� Section

� discusses the parameters of the model� and presents an automatic method for selecting their

values� In section �� formulas for the posterior mean and variance are given� Section � gives

a more detailed example of the performance of our uncertainty bands� A simulation study is

given in section �� with comparisons between the proposed method� and two existing methods�

Conclusions and discussion of further work are given in section ��

� The Model and an Example

��� The Model

The data are assumed to be of the form

yi � f	i�n
 
 �zi� i � �� �� � � � � n� ��

where the zi are independent and identically distributed standard normal observations� i�e�

N	�� �
� and � is assumed known� Typically n is an integer power of �� We let f�j�kgj�k�ZZ be

an orthonormal wavelet basis of L�	IR
� where

�j�k	x
 � �j���	�jx� k


is a dilation at scale j and translation by k��j of the �mother� wavelet function �� The corre�

sponding wavelet coe�cient for f � L�	IR
 will be written as �j�k � hf� �j�ki�

In the context of discrete data� there is an analogue to the above� For example� using

Daubechies wavelets of compact support 	Daubechies 	����

� there exists a corresponding

periodic� discrete wavelet transform which takes our n�length vector of observations� y� to a

vector � of equal length� containing the empirical wavelet coe�cients� This process may be

represented as multiplication by an orthogonal matrix W � yielding the relations

� � Wy
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� Wf 
 �Wz

� � 
 �z� �

where � � Wf is the n�length vector of discrete wavelet coe�cients of f � and z� is an n�length

vector of independent and identically distributed N	�� �
 observations� Note that in practice the

periodic� discrete wavelet transform and its inverse may be computed in only O	n
 operations�

using the pyramid �ltering algorithm of Mallat 	����
�

Our shrinkage functions are derived by imposing a particular prior structure onto the model�

in the space of wavelet coe�cients� In the prior� the coe�cients are mutually independent� and

each coe�cient is a mixture of two normal distributions i�e��

�j�kj	j�k � 	j�k N	 � � c�j

�
j 
 
 	�� 	j�k
 N	 � � 
�j 
 �

The mixture parameter 	j�k has its own prior distribution given by

P 		j�k � �
 � �� P 		j�k � �
 � pj �

The pj � cj� and 
j are prior parameters to be chosen� Note that we use the same prior parameters

for all coe�cients at a given resolution level j� The N	�� 
�j 
 component allows us to concentrate

some of the mass near zero� while the N	�� c�j

�
j 
 component spreads out the rest of the mass

across larger values� Figure �	a
 depicts two such normal components� Figure �	b
 depicts the

resulting mixture distribution 	p � ���
� This type of prior has been used previously by George

and McCulloch 	����
 for variable selection in linear regression�

Conditional on the values of �j�k and ��� the empirical wavelet coe�cients are then dis�

tributed as

�j�kj�j�k � �
� � N	 �j�k � �

� 
 �

Once data are observed� the empirical wavelet coe�cients are determined� and we seek the

posterior distribution on the unobserved true �j�k� That is� we seek the distribution of �j�k j�j�k�

We will focus on the expected value and variance of this distribution� Closed form solutions are
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given in section �� Given the expected value� we estimate f by �f � WT E	�j�
� Figures �	a


and 	b
 show examples of the posterior mean and variance of the true wavelet coe�cient� as

functions of the empirical wavelet coe�cient� for a particular choice of the hyperparameters�

The simple form of our prior means that 
j � cj� and pj have intuitive interpretations� A

coe�cient at level j with negligible size would have magnitude comparable to 
j � Large coef�

�cients at level j are cj times larger than this� The parameter pj for the prior on 	j�k may

be thought of as the proportion of coe�cients that are expected to be non�negligible at level

j� Automatic methods for selecting values of these parameters based on the data and wavelet

theory are discussed in section ��

With this basic understanding of the model and prior� we are now equipped to consider a

simple example�

��� An Example

In this example� we compare our ABWS method to two existing methods of wavelet shrinkage�

Figure �	a
 shows a ��P nuclear magnetic resonance 	NMR
 spectrum 	length n � ����
� taken

from a single voxel of a three�dimensional image data set of a normal human brain� The spatially

variable nature of the underlying signal and the moderate signal�to�noise ratio are characteristic

of the type of data for which wavelet shrinkage has been found to be particularly appropriate�

The role �lled by wavelet shrinkage in this particular context is that of de�noising the data

while maintaining the integrity of the underlying spectral peaks� This integrity is crucial�

as the location� number� width� and intensity of these sharp peaks are used by scientists in

determining the molecular properties of the tissue from which this sample arose� See Hausser

and Kalbitzer 	����
 for a general introduction to the �eld of NMR�

Figure �	b
 shows a reconstruction of the underlying signal� or a �de�noising� of the data�

using ABWS� In Figures �	c
 and 	d
 are shown the reconstructions using the VisuShrink and

SureShrink methods� respectively� of Donoho and Johnstone 	����� ����
� Note that the Vis�
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uShrink reconstruction does the most complete job of removing �noise�� but tends to attenuate

the peaks� SureShrink� on the other hand� attenuated much less� but at the expense of includ�

ing what appears to be more high�frequency artifacts� The ABWS reconstruction� however�

lies between the two� as it possess nearly the same �noise�free� visual quality of the VisuShrink

reconstruction� but without the attenuation� This combination of a lack of both noise and

attenuation can be important not only in providing a visually pleasing reconstruction� but

also in providing good starting values for iterative parametric �tting algorithms used by NMR

researchers�

All three reconstructions used Daubechies wavelets of order �� The VisuShrink reconstruc�

tion shrunk coe�cients at resolution levels j � �� � � � � �� shrinking with this method at lower

resolution levels tends to yield an unacceptable amount of attenuation in the reconstruction�

The SureShrink and ABWS reconstructions shrunk coe�cients at resolution levels j � �� � � � � ��

as the amount of shrinkage is chosen adaptively in both methods� we chose not to compute

the detail coe�cients as low as levels j � � and �� because the e�ect of periodicities in the

underlying wavelets becomes pronounced enough to severely a�ect the interpretation of the

corresponding coe�cients� As outlined in the previous subsection� the ABWS reconstruction

was created using level�dependent shrinkage functions� The hyperparameters for each function

were determined by the automatic method described in section �� To illustrate how the ABWS

shrinkage function adapts to di�erent levels� the shrinkage functions for all levels are shown in

Figure �� Each line corresponds to a di�erent level j� In this example� as j approaches the

coarser 	i�e� smaller j
 levels� values are shrunk less� In fact� the straight line in this �gure

corresponds to resolution level j � �� indicating that ABWS chose not to do any shrinkage at

this level�

An additional feature of our method is a straightforward approach to quantifying some de�

gree of uncertainty in the reconstruction� Figure � shows the ABWS reconstruction with upper

and lower uncertainty bands� obtained through usage of the posterior variance information� as
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detailed in section �� The narrowness of the bands is attributable to the high signal�to�noise

ratio� In section � we will see an example in which this relationship is studied in more detail�

� Choosing the Prior

Our normal mixture prior for each �j�k�

�j�kj	j�k � 	j�k N	 � � c�j

�
j 
 
 	�� 	j�k
 N	 � � 
�j 
 �

depends on the constants 	hyperparameters
 
j � cj and pj � In order to use our prior� values

for these constants must be chosen� In this section we discuss the choice of these values� and

how this choice relates to the way in which the empirical wavelet coe�cients are shrunk� We

give simple recommendations for choices of 
j � cj and pj which we have found to work well in

a variety of situations� Given our recommended choices� the normal mixture prior provides a

simple� automatic approach to wavelet shrinkage� Alternatively� the simple form of the prior

and the intuitive roles of 
j � cj and pj make it easy to �play� with the prior in order to obtain a

variety of shrinkage estimates resulting in di�erent amounts of smoothness in the corresponding

estimate of the function f �

We �rst discuss the general role of 
j � cj and pj in determining the shrinkage of the wavelet

coe�cients� We then present our recommended default choices�

��� The Role of the Hyperparameters

The wavelet shrinkage estimation procedure will work well when the set of true coe�cients

f�j�kg is �sparse�� there are a few large coe�cients and the rest are small� Our prior directly

captures this intuition by quantifying �a few�� �small�� and �large�� The N	 � � 
�j 
 component

of the mixture is meant to describe a small coe�cient� We choose 
j so that if the coe�cient

is in the interval 	��
j � �
j
 it is so small that for practical purposes it might as well be zero�

The N	 � � c�j

�
j 
 is meant to describe �large�� This normal component should be su�ciently
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spread out to cover the full range of plausible coe�cients 	cj � �
� The parameter pj may

then be interpreted as the probability that a coe�cient is non�negligible� It is the percentage

of coe�cients at level j that we expect to be appreciably di�erent from zero� Small values of

pj represent the idea of sparseness�

Note that we choose di�erent values of the parameters at di�erent levels 	as illustrated in

Figure �
� For the cj and 
j this is natural� because whether a coe�cient is small or large

depends in part on the height and width of the corresponding wavelet� which are related to the

resolution level� For the pj � we would expect a smaller percentage of the coe�cients at higher

resolution levels to be large� suggesting that pj decrease as the resolution level increases�

To understand how the choice of hyperparameters relates to the ultimate shrinkage of the

empirical wavelet coe�cient we write�

E	�j�kj�j�k
 � E�j�kj�j�k
E	�j�kj�j�k � 	j�k


� Pr		j�k � �j�j�k
E	�j�kj�j�k� 	j�k � �
 
 Pr		j�k � �j�j�k
E	�j�kj�j�k � 	j�k � �


� Pr		j�k � �j�j�k

	cj
j


�

�� 
 	cj
j
�
�j�k 
 Pr		j�k � �j�j�k



�j
�� 
 
�j

�j�k �

where P 		j�k � �j�j�k
 is determined as equation � in section �� The shrinkage function may

be interpreted as a smooth interpolation between two lines of slope


�j
�� 
 
�j

and
	cj
j


�

�� 
 	cj
j
�
�

See Figure �	a
 �

When �j�k is small� this suggests that �j�k is small� so that then Pr		j�k � �j�j�k
 is large� In

this case we see that the shrinkage function approximately follows a straight line with intercept

zero and slope
��j

�����
j

� When 
j is small so is this slope� Thus� relatively small values of 
j

give us the �at portion of the shrinkage function around zero� When �j�k is large the shrinkage

function approximately follows a straight line with intercept zero and slope
�cj�j��

����cj�j��
� For large

cj this slope will be close to �� Thus our shrinkage function is obtained as a weighted average
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of a linear function with a small slope and a linear function with a slope close to �� As �j�k

increases� the weight on the line with the larger slope increases to �� The parameters cj and 
j

determine the slopes of the two lines� Small values of pj will increase the width of the interval

about zero where the shrinkage function clings to the line with the smaller slope� Given 
j and

pj � increasing cj will shorten the interval in which the shrinkage function climbs from the line

with the smaller slope up to the line with the larger slope 	making the �at portion larger
� This

is because as cj increases the two alternative components of the mixture become more sharply

distinguished�

��� Default Choices for the Hyperparameters

In this section we describe our default choices for the hyperparameters� All of the examples we

present in this paper employ the defaults� The default choices are motivated by the discussion

in the previous section�

First of all� to choose 
j we must decide what a �small� coe�cient is� Our basic equation

f � WT� relates the coe�cients to the function f � Let WT
j�k be the column of WT corresponding

to �j�k� The contribution of the 	j� k
 coe�cient to f is then the vector WT
j�k�j�k � Since the

average of the components of WT
j�k will be zero 	the discrete analogue of the requirement that all

wavelet functions integrate to zero
� this contribution will be visually negligible if the maximum

value of WT
j�k�j�k is not much di�erent from the minimum� Let Mj � max��i�n��W

T
j��	i
 and

mj � min��i�n��WT
j��	i
� both of which depend only on j and not on k� Then the contribution

is small if 	Mj �mj
�j�k is small� 	Mj �mj
�j�k is the maximum perturbation in f due to the

	j� k
 coe�cient� Let � be a perturbation in f which is considered to be negligible� Since our

prior places �j�k in 	��
j � �
j
 with high probability we choose 
j as�

�
j �
�

Mj �mj

In practice we have found that choosing � to be the �rst percentile of the set of values fjyi�� �

��



yijg
i�n��
i�� works well�

Rather than choosing cj directly it is easier to choose the product cj
j � To choose cj
j we

must have an idea of what the range of plausible values are for the corresponding coe�cients�

An application of H�older�s inequality indicates that for f � L�	IR
�

����Z f	x
�j�k	x
dx

���� � jj�j�kjjL� jjf jjL� � ��j�� jj�jjL� jjf jjL� �

Since �cj
j represents an upper bound on what we think of as �signal� coe�cients� we would set

�cj
j � ��j�� jj�jjL� jjf jjL�

if we had such information� Instead� we settle for the estimate

dcj
j �
��j��jj�jjL� �max��i�N�� jyij 

�
�

An approximation to jj�jjL� may be calculated by numerically computing �� using the method

of Daubechies 	����
� for example� Note that using the maximum of the absolute value tends

to overestimate the sup norm of f � but we have found that results are not overly sensitive to

this choice� This use of the sup norm works best when the data �rst has its mean subtracted�

The value pj is the probability� at resolution level j� that a given wavelet coe�cient �j�k will

contain �signal�� Donoho et al� 	����
 have suggested the �universal threshold value�

tn �
q

� log	n
�

as a probabilistic upper bound on the size of the �noise� over all n empirical coe�cients� Inter�

preting this value as a cut�point which separates �signal� from �noise�� we de�ne

�pj �
!f�j�k � j�j�kj �

q
� log	�j
 �vNoise

j g

�j
�

where

�vNoise
j �

q
��� 
 �
�j �

��



In other words� �pj is just the proportion of empirical coe�cients declared to contain �signal�

using the �
p

� log	n
�rule�� Note that we could similarly use any other rule� such as the minimax

thresholds of Donoho and Johnstone 	����
�

Throughout our discussion we have assumed that �� is known� In practice we use a robust

estimate of � and then plug that estimate into our procedure� acting as if the estimate were

the true value� Speci�cally� most coe�cients at the highest resolution level j � J � � will be

�noise� i�e��

�j�k � Normal	�� �� 
 
�J��
 �

Hence we may estimate vNoise
J�� �

q
�� 
 
�J�� by

�vNoise
J�� �

Median��k��J����j�J���k j

������
�

and then � as

�� �
q

	vNoise
J�� 
� � 	�
J��
� �

In other words� our estimate of �� and the justi�cation thereof� is similar to that of Donoho et

al� 	����
� with the obvious adjustments made for the present context�

� Means and Variances of Coe�cients and Function Values

In this section we present the details for the computation of posterior means and variances�

With the assumption that � is known� simple closed form formulas are available for E	�j�kj�j�k


and Var	�j�kj�j�k
� Note that as a result of the independence postulated within our model� the

posterior covariance matrix of the vector of the �j�k is a diagonal matrix� which we denote by

D� The posterior mean of f is then obtained from the linear wavelet transformation�E	f jy
 �

WTE	�j�
� The covariance matrix of f is WTDW � We discuss an e�cient computational

strategy for obtaining this matrix�

Although we concentrate on the �rst two moments in our inference we actually can obtain

the posterior distribution as a whole� To simplify the presentation of the formulas we will drop

��



the j and k subscripts 	so� for example� � refers to a single wavelet coe�cient
� We obtain

the posterior for � by �rst calculating the marginal posterior of 	 and then that of �j	� The

marginal posterior for 	 may be shown to be

P 		 � �j�
 �
O

O 
 �
� 	�


where

O �
p 
	�j	 � �


	�� p

	�j	 � �

�

and 
	�j	 � �
 � N	�� �� 
 c�
�
 and 
	�j	 � �
 � N	�� �� 
 
�
�

The posterior distribution of � can then be expressed as

F 	�j�
 � F 	�j�� 	 � �
 �
O

� 
 O

 F 	�j�� 	 � �
 �

�

� 
 O
�

where F 	�j�� 	 � �
 is the distribution function for

�j�� 	 � � � Normal

�
	c

�

�� 
 	c

�
� �

��	c

�

�� 
 	c

�

�

and F 	�j�� 	 � �
 is the distribution function for

�j�� 	 � � � Normal

�

�

�� 
 
�
� �

��
�

�� 
 
�

�
�

The posterior mean of � is then�

E��j� �

�
	c

�

�� 
 	c

�
�

O

O 
 �




�

�� 
 
�
�

�

O 
 �

�
� � �

The result is a multiplication of � by the shrinkage factor

s	�
 �
	c

�

�� 
 	c

�
�

O

O 
 �




�

�� 
 
�
�

�

O 
 �
�

where js	�
j � �� which is itself a function of �� The product � s	�
 yields curves like that

shown in Figure �	a
� Hence� estimation of � via the posterior mean E��j� is equivalent to the

usage of a nonlinear shrinkage function�

��



We now derive the posterior variance� Begin with the relation

Var	�j�
 � E� �Var	�j�� 	
 
 Var�	E��j�� 	 


� E� �Var	�j�� 	
 
 E� �	E��j�� 	 
� � 	E��E��j�� 	  
� �

The above results yield the expressions

E� �Var	�j�� 	
 �
��
�

�� 
 
�
�

�

� 
 O



��	c

�

�� 
 	c

�
�

O

� 
 O

and

E� �	E��j�� 	 
� �

�

�

�� 
 
�
�

��

�
�

� 
 O



�
	c

�

�� 
 	c

�
�

��

�
O

� 
 O

and� of course�

	E� �E��j�� 	  
� � 	E��j� 
� �

For small values of ��

Var	�j�
 � 
� �

and for large values of ��

Var	�j�
 � �� �

In between these two extremes is where the variance is greatest� which makes intuitive sense�

This is precisely the range in which we are least sure whether an underlying coe�cient contains

�signal� or not� See Figure �	b
�

Given the �rst two moments of � 	now let � and � denote vectors of the corresponding

wavelet coe�cients
 it is straightforward to compute the �rst two moments of f � Our recon�

struction� �f � is the result of inverting the posterior mean vector E��j� i�e��

�f � WT 	E��j� 
 �

The covariance matrix for this reconstruction vector is just

" � WTDW �

��



where D � diagfVar	�j�
g� Calculation of " may be accomplished in O	n�
 operations� instead

of the expected O	n�
 operations� by noting that

" � WTDW � WT 	WTD
T

suggests that we compute the O	n
 inverse wavelet transform of each of the n columns of D�

transpose the result� and repeat�

The matrix " may be viewed as a gray�scale image� and perhaps serve to give a visual

representation of the pattern of associations within f� Also� since typically " will be roughly a

diagonal matrix� we can augment our plot of f by plotting upper and lower bands

f 	 �
q

diag	"
 �

Of course these intervals are not frequentist con�dence intervals but point�wise� Bayesian poste�

rior intervals based on the assumed form of prior� They should still serve to give some indication

of variability� Note that for simplicity we use the bands based on the posterior variances even

though the posteriors of the individual wavelet coe�cients are bimodal� The reader is referred to

Brillinger 	����� ����
 and Bruce and Gao 	����
 for derivations and examples of approximate

frequentist� point�wise con�dence intervals in the context of wavelet shrinkage estimation�

� Uncertainty Bands� An example�

In this section we consider a brief example to illustrate the quality of the uncertainty bands

discussed in section �� In section � we saw that the high signal�to�noise ratio of the nuclear

magnetic resonance data lead to extremely tight uncertainty bands� In general� we would expect

that higher signal�to�noise ratios lead to more accurate reconstructions and tighter uncertainty

bands�

Figure �	a
 shows data and the ABWS reconstruction for the �Blocks� signal of Donoho

et al� 	����
� The signal�to�noise ratio� SD	f
��� is �� In Figure �	b
 is shown the upper

��



and lower uncertainty bands for this reconstruction� as well as the true underlying signal� As

expected� the reconstruction is quite accurate� displaying a minimum amount of noise and Gibbs

phenomena� Accordingly� the uncertainty bands are quite tight�

Similarly� Figure �	a
 shows data and the ABWS reconstruction for the �Blocks� signal with

a signal�to�noise ratio of �� while Figure �	b
 shows the uncertainty bands and the �Blocks�

signal itself� Considering that the underlying signal is di�cult to distinguish with the human

eye� the ABWS reconstruction still does rather well� Even more encouraging is the fact that

the true signal is contained almost entirely within the uncertainty bands�

	 Simulations�

The standard VisuShrink 	Donoho and Johnstone� ����
 approach to de�noising with wavelets

uses the soft�threshold function and the universal threshold� This approach is not intended to

minimize mean squared error� but rather to achieve a type of �near�minimax� optimality� The

result is an estimator which achieves a low variance� at the expense of bias� In the SureShrink

approach 	Donoho and Johnstone� ����
� the soft�threshold function is retained� but the univer�

sal threshold is used only at the highest resolution levels where the coe�cients contain primarily

noise� At lower resolution levels the thresholds are obtained by selecting a value which mini�

mizes an estimate of expected mean squared error 	in the space of wavelet coe�cients
� Hence

the bias of the resulting estimator should be less than that of VisuShrink� at the expense of an

increase in variance�

Similarly� our Bayesian approach 	ABWS
 seeks to minimize mean squared error by using

the posterior mean� The resulting shrinkage functions typically appear to be smooth interpola�

tions of threshold functions� Hence we might expect properties similar to those of SureShrink�

A simulation study was conducted to compare the performance of these three estimators�

The four standard test functions of Donoho and Johnstone� i�e� �Bumps�� �Blocks�� �Doppler��

��



and �HeaviSine�� 	generated using their WaveLab software package
 were used in the simula�

tion� Each function was sampled at N � ���� points� Noise distributed as N	�� �
 was added�

and reconstructions were created using VisuShrink� SureShrink� and ABWS� A total of ����

trials were conducted for each of the four signals� In the VisuShrink reconstructions� de�noising

was done only down through resolution level j � �� For the other two methods� de�noising was

done through the lowest possible resolution level� as dictated by the lengths of the correspond�

ing wavelet �lters� For the function �Bumps�� Daubechies wavelets of order � were used� for

�Blocks�� Haar wavelets� and for �Doppler� and �HeaviSine�� most nearly symmetric Daubechies

wavelets of order ��

In order to evaluate performance� we used estimates of the integrated mean squared errorR
E�	 �f	x
� f	x

� dx� and its decomposition into bias and variance components i�e��

Z
E

��
�f	x
� f	x


��	
dx �

Z
E

��
�f	x
�E� �f	x
 

��	
dx


Z �
E� �f	x
 � f	x


��
dx

�
Z

Var	 �f	x

 dx

Z

Bias�	 �f	x

 dx �

In Table � we give estimates of these three values 	approximations of the integrals by sums over

the ���� trials
 for the four signals� and the three methods of reconstruction�

The simulations show that ABWS has uniformly smaller mean squared error over the four

test signals� with SureShrink second and VisuShrink third in the rankings� As expected� both

ABWS and SureShrink show marked improvements over VisuShrink in bias� but at the expense

of an increase in variance� Note that the proportional change in both bias and in variance

varies considerably across signals� Except for the case of the �HeaviSine� signal� SureShrink

and ABWS tend to roughly double the variance to achieve reductions in bias ranging from

about ��# to less than ��# of the bias of VisuShrink� The least striking improvements over

VisuShrink occur in the �HeaviSine� signal� the least spatially variable in some sense�

Compared to its more appropriate competitor� SureShrink� the ABWS method still exhibits

��



a smaller bias across all four test functions� and a similar variance� The reconstruction of the

�Blocks� signal is especially striking� however� where ABWS has approximately ��# the bias

of SureShrink and only about ��# the variance� In fact� its variance is quite close to that of

VisuShrink� approximately ��# larger� while its bias is only �# the size of that of VisuShrink $


 Conclusion

In this paper� we have developed what amounts to a class of shrinkage functions for wavelet

shrinkage by approaching the standard context from a Bayesian point of view� An automatic

method has been proposed whereby a set of level�dependent shrinkage functions may be chosen

adaptively for a given dataset� Using this method� our experience has been that as the resolution

level decreases� the chosen shrinkage functions approach� and sometimes become� the identity

function i�e�� no shrinkage is done 	e�g� see Figure �
� This result indicates that not only are the

shrinkage functions chosen adaptively� but where we stop shrinking is also chosen adaptively�

In principle� our method even might choose to not shrink at a given resolution level� and yet

shrink slightly at a lower level if deemed necessary�

Additionally� we have o�ered a method by which the uncertainty in a reconstruction may

be quanti�ed and displayed� The method is simple� both conceptually and computationally�

The posterior variance functions upon which this method is based are also interesting in and

of themselves� as they indicate where in the process of shrinkage one is more 	or less
 sure of a

particular value�

In general� we believe the Bayesian approach to wavelet shrinkage o�ers a conceptually

simple way to obtain intuitively appealing shrinkage functions� Our goal in this paper is to

choose a prior in a way that is simple and yet re�ects the structure of the wavelet problem�

Other choices of prior may also lead to reasonable results� For example� Clyde� Parmigiani�

and Vidakovic 	����
 specify a mixture prior similar to ours� but the small component 	our

��



N	�� 
�

 is simply a point mass at zero� In addition� Clyde et al� place a prior on � 	rather

than assuming it known or estimable
� and use Monte Carlo methods in their calculations as

a result� On the non�Bayesian side� most e�orts have been aimed at adaptively estimating

thresholds in the soft�thresholding approach� Besides SureShrink� cross�validation has been

used by Nason 	����
� Wang 	����
� and Weyrich and Warhola 	����
� In a slightly di�erent

direction� Hall and Patil 	����
 introduce a pseudo�bandwidth 	�primary resolution�
 parameter

into their formulation of the model�

An interesting extension to this work would be to incorporate the fact that wavelets at

di�erent levels� but at the same relative position� are similarly large or small� depending on the

underlying function f � One should be able to incorporate such information into the prior dis�

tribution� Rather than the current independent priors on 	�s and ��s� correlations could express

beliefs about such relations� This would borrow strength from di�erent levels of coe�cients�

and might prove useful in� for example� edge detection in image processing applications� We

note� however� that priors that are not independent will likely increase the level of computation

required�
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Figure �� 	a
� Two zero�mean normal density functions� one concentrated 	&
 and the other

di�use 	��
� 	b
� Mixture of the normal distributions in 	a
� with p � ����

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

w

E
[th

et
a|

w
]

−6 −4 −2 0 2 4 6

0

1

2

3

4

5

6

w

V
ar

(t
he

ta
|w

)

	a
 	b


Figure �� 	a
 and 	b
� Posterior mean� E��j� � and variance� Var	�j�
� as functions of the

empirical wavelet coe�cient �� Hyperparameters were chosen as 
 � ���� c � ���� and p � �����

while � was �xed at ��
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Figure �� 	a
� Nuclear magnetic resonance spectrum� 	Provided in the WaveLab software

package� Source� Andrew Maudsley� Ph�D�� Dept� of Radiology� University of California� San

Francisco�
 	b�d
� Reconstructions using ABWS� VisuShrink� and SureShrink� respectively�
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Figure �� Shrinkage functions for nuclear magnetic resonance data� for resolution levels j �

�� � � � � ��
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Figure �� ABWS reconstruction of nuclear magnetic resonance data� with upper and lower

uncertainty bands�
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Figure �� 	a
� Data and ABWS reconstruction 	using Haar wavelets
 for the signal �Blocks�

	SNR��
� 	b
� True function �Blocks� 	�
� with upper and lower uncertainty bands 	��
�
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Figure �� 	a
� Data and ABWS reconstruction for the signal �Blocks� 	SNR��
� 	b
� True

function �Blocks� 	�
� with upper and lower uncertainty bands 	��
� 	Note� The SNR here

and in Figure � was regulated by scaling the underlying signal� thus changing the range used

in plotting�
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BUMPS BLOCKS

Method Variance Bias� MSE Variance Bias� MSE

Visu ������ ������ ������ ������ ������ ������

Sure ������ ������ ������ ������ ������ ������

ABWS ������ ������ ������ ������ ������ ������

DOPPLER HEAVISINE

Method Variance Bias� MSE Variance Bias� MSE

Visu ������ ������ ������ ������ ������ ������

Sure ������ ������ ������ ������ ������ ������

ABWS ������ ������ ������ ������ ������ ������

Table �� Simulation results comparing ABWS� VisuShrink� and SureShrink with respect to

mean squared error performance and its decomposition into bias and variance components�

Numerical values are based on ���� trials�
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