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Abstract

When fitting wavelet based models, shrinkage of the empirical wavelet coefficients is an effective
tool for de-noising the data. This paper outlines a Bayesian approach to shrinkage, obtained by
placing priors on the wavelet coefficients. The prior for each coefficient consists of a mixture of
two normal distributions with different standard deviations. The simple and intuitive form of
prior allows us to propose automatic choices of prior parameters. These parameters are chosen
adaptively according to the resolution level of the coefficients, typically shrinking high resolu-
tion (frequency) coefficients more heavily. Assuming a good estimate of the background noise
level, we obtain closed form expressions for the posterior means and variances of the unknown
wavelet coefficients. The latter may be used to assess uncertainty in the reconstruction. Several
examples are used to illustrate the method, and comparisons are made with other shrinkage
methods.

Key Words: Bayesian Estimation, Mixture Models, Uncertainty Bands.

1 Introduction

Wavelets have been found to provide an effective model for data of the form y = f + z, when
[ is a potentially complex, spatially inhomogeneous function. The essence of a wavelet based
model is a one-to-one transform of f into a space of wavelet coefficients. The coefficient space is
structured, roughly, according to the location and scale (frequency) of the functional information
contained in each coeflicient. Standard wavelet methods assume equally spaced measurements
of f with additive noise, and seek to “de-noise” the data by shrinking the empirical wavelet
coeflicients towards zero. When the reduced empirical coefficients are then transformed back to
the data space, the reconstructed signal typically has much of the noise removed. See Donoho,
Johnstone, Kerkyacharian, and Picard (1995), as well as DeVore and Lucier (1992). For a more

basic introduction, see Nason and Silverman (1994).
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Shrinkage of the empirical wavelet coeflicients works best in problems where the underlying
set of the true coeflicients of f is sparse. That is, the overwhelming majority of these coeflicients
are small, and the remaining few large coeflicients explain most of the functional form in f.
By shrinking the empirical coefficients towards zero, the smaller ones (which contain primarily
noise) may be reduced to negligible levels, hence de-noising the signal.

One natural way to obtain shrinkage estimates of the true coefficients is via Bayesian meth-
ods. In the Bayesian approach, a prior distribution is placed on each coeflicient. We propose
a particular prior distribution designed to capture the sparseness common to most wavelet ap-
plications. Some of the mass is concentrated on values close to zero. The rest of the mass is
spread to accommodate the possibility of large coeflicients. These heavy tailed priors give rise
to shrinkage functions which vary the amount of shrinkage according to the magnitude of the
coeflicient. Smaller coeflicients are essentially shrunk to zero, while larger coefficients, which
contain more information, are shrunk less. We present automatic procedures for fixing the
prior parameters at each resolution level, resulting in level dependent shrinkage functions. The
adaptive nature of the procedure gives rise to its name, ‘Adaptive Bayesian Wavelet Shrink-
age’ (ABWS). Alternatively, the intuitive meaning of each of the prior parameters means that
they may also be experimented with easily to adapt the degree of shrinkage and de-noising
subjectively.

We assume an accurate estimate of the noise level is available, and thus treat it as known.
This enables us to obtain closed form expressions for the posterior means and variances of the
true wavelet coeflicients. As a result, the reconstruction, along with uncertainty bounds, can
be computed quickly. However, there is a trade-off. If the noise level can be well estimated
our approach has an appealing simplicity. If this is not the case, a more complete Bayesian
approach should capture the uncertainty about the noise level (e.g. Clyde, Parmigiani, and
Vidakovic (1995), Vidakovic (1994)).

The paper is organized as follows: In section 2, the model and prior are outlined, and an
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example with a minimum of detail is given, to illustrate the potential of this approach. Section
3 discusses the parameters of the model, and presents an automatic method for selecting their
values. In section 4, formulas for the posterior mean and variance are given. Section 5 gives
a more detailed example of the performance of our uncertainty bands. A simulation study is
given in section 6, with comparisons between the proposed method, and two existing methods.

Conclusions and discussion of further work are given in section 7.

2 The Model and an Example
2.1 The Model

The data are assumed to be of the form
yi = f(i/n) + oz, t=0,1,...,n—1,

where the z; are independent and identically distributed standard normal observations, i.e.
N(0,1), and o is assumed known. Typically n is an integer power of 2. We let {11}, 7 be

an orthonormal wavelet basis of L?(IR), where
Yik(e) = 2920 — k)

is a dilation at scale j and translation by k/2’ of the ‘mother’ wavelet function . The corre-
sponding wavelet coefficient for f € L*(IR) will be written as 6, = (f,¥;x).

In the context of discrete data, there is an analogue to the above. For example, using
Daubechies wavelets of compact support (Daubechies (1992)), there exists a corresponding
periodic, discrete wavelet transform which takes our n-length vector of observations, y, to a
vector w of equal length, containing the empirical wavelet coefficients. This process may be

represented as multiplication by an orthogonal matrix W, yielding the relations

w = Wy
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Wt 4+ oWz

0+ o0z,

where § = WT is the n-length vector of discrete wavelet coefficients of f, and z* is an n-length
vector of independent and identically distributed N (0, 1) observations. Note that in practice the
periodic, discrete wavelet transform and its inverse may be computed in only O(n) operations,
using the pyramid filtering algorithm of Mallat (1989).

Our shrinkage functions are derived by imposing a particular prior structure onto the model,
in the space of wavelet coefficients. In the prior, the coefficients are mutually independent, and

each coefficient is a mixture of two normal distributions i.e.,
Oi0clvik ~ ik NCO, i)+ (1= 70) N(0, 77)
The mixture parameter v, has its own prior distribution given by
Plyje=1)=1-Pyr=0)=p; .

The p;, ¢;, and 7; are prior parameters to be chosen. Note that we use the same prior parameters
for all coefficients at a given resolution level j. The N(0, 7]2) component allows us to concentrate
some of the mass near zero, while the N (0, C?TJZ) component spreads out the rest of the mass
across larger values. Figure 1(a) depicts two such normal components. Figure 1(b) depicts the
resulting mixture distribution (p = 0.5). This type of prior has been used previously by George
and McCulloch (1993) for variable selection in linear regression.

Conditional on the values of #;; and o2, the empirical wavelet coefficients are then dis-

tributed as

wi k0, 0F ~ N85, 0%) .

Once data are observed, the empirical wavelet coefficients are determined, and we seek the
posterior distribution on the unobserved true 6, ;. That is, we seek the distribution of §; ;|w; x.

We will focus on the expected value and variance of this distribution. Closed form solutions are
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given in section 4. Given the expected value, we estimate f by f = W7 E(8|w). Figures 2(a)
and (b) show examples of the posterior mean and variance of the true wavelet coefficient, as
functions of the empirical wavelet coefficient, for a particular choice of the hyperparameters.

The simple form of our prior means that 7;,¢;, and p; have intuitive interpretations. A
coefficient at level j with negligible size would have magnitude comparable to 7;. Large coef-
ficients at level j are ¢; times larger than this. The parameter p; for the prior on 7;; may
be thought of as the proportion of coeflicients that are expected to be non-negligible at level
j. Automatic methods for selecting values of these parameters based on the data and wavelet
theory are discussed in section 3.

With this basic understanding of the model and prior, we are now equipped to consider a

simple example.

2.2 An Example

In this example, we compare our ABWS method to two existing methods of wavelet shrinkage.
Figure 3(a) shows a 3! P nuclear magnetic resonance (NMR) spectrum (length n = 1024), taken
from a single voxel of a three-dimensional image data set of a normal human brain. The spatially
variable nature of the underlying signal and the moderate signal-to-noise ratio are characteristic
of the type of data for which wavelet shrinkage has been found to be particularly appropriate.
The role filled by wavelet shrinkage in this particular context is that of de-noising the data
while maintaining the integrity of the underlying spectral peaks. This integrity is crucial,
as the location, number, width, and intensity of these sharp peaks are used by scientists in
determining the molecular properties of the tissue from which this sample arose. See Hausser
and Kalbitzer (1991) for a general introduction to the field of NMR.

Figure 3(b) shows a reconstruction of the underlying signal, or a ‘de-noising’ of the data,
using ABWS. In Figures 3(c) and (d) are shown the reconstructions using the VisuShrink and

SureShrink methods, respectively, of Donoho and Johnstone (1994, 1995). Note that the Vis-
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uShrink reconstruction does the most complete job of removing ‘noise’, but tends to attenuate
the peaks. SureShrink, on the other hand, attenuated much less, but at the expense of includ-
ing what appears to be more high-frequency artifacts. The ABWS reconstruction, however,
lies between the two, as it possess nearly the same ‘noise-free’ visual quality of the VisuShrink
reconstruction, but without the attenuation. This combination of a lack of both noise and
attenuation can be important not only in providing a visually pleasing reconstruction, but
also in providing good starting values for iterative parametric fitting algorithms used by NMR
researchers.

All three reconstructions used Daubechies wavelets of order 3. The VisuShrink reconstruc-
tion shrunk coeflicients at resolution levels 7 = 5,...,9; shrinking with this method at lower
resolution levels tends to yield an unacceptable amount of attenuation in the reconstruction.
The SureShrink and ABWS reconstructions shrunk coeflicients at resolution levels j = 2,...,9,
as the amount of shrinkage is chosen adaptively in both methods; we chose not to compute
the detail coefficients as low as levels 7 = 0 and 1, because the effect of periodicities in the
underlying wavelets becomes pronounced enough to severely affect the interpretation of the
corresponding coefficients. As outlined in the previous subsection, the ABWS reconstruction
was created using level-dependent shrinkage functions. The hyperparameters for each function
were determined by the automatic method described in section 3. To illustrate how the ABWS
shrinkage function adapts to different levels, the shrinkage functions for all levels are shown in
Figure 4. FEach line corresponds to a different level j. In this example, as j approaches the
coarser (i.e. smaller j) levels, values are shrunk less. In fact, the straight line in this figure
corresponds to resolution level j = 2, indicating that ABWS chose not to do any shrinkage at
this level.

An additional feature of our method is a straightforward approach to quantifying some de-
gree of uncertainty in the reconstruction. Figure 5 shows the ABWS reconstruction with upper

and lower uncertainty bands, obtained through usage of the posterior variance information, as
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detailed in section 4. The narrowness of the bands is attributable to the high signal-to-noise

ratio. In section 5 we will see an example in which this relationship is studied in more detail.

3 Choosing the Prior

Our normal mixture prior for each ;,
0501k ~ ik NCO, i)+ (1= 70) N(O, 77)

depends on the constants (hyperparameters) 7;, ¢; and p;. In order to use our prior, values
for these constants must be chosen. In this section we discuss the choice of these values, and
how this choice relates to the way in which the empirical wavelet coefficients are shrunk. We
give simple recommendations for choices of 7;, ¢; and p; which we have found to work well in
a variety of situations. Given our recommended choices, the normal mixture prior provides a
simple, automatic approach to wavelet shrinkage. Alternatively, the simple form of the prior
and the intuitive roles of 7;, ¢; and p; make it easy to “play” with the prior in order to obtain a
variety of shrinkage estimates resulting in different amounts of smoothness in the corresponding
estimate of the function f.

We first discuss the general role of 7;, ¢; and p; in determining the shrinkage of the wavelet

coeflicients. We then present our recommended default choices.

3.1 The Role of the Hyperparameters

The wavelet shrinkage estimation procedure will work well when the set of true coeflicients
{6, 1} is ‘sparse’: there are a few large coefficients and the rest are small. Our prior directly
captures this intuition by quantifying “a few”, “small”, and “large”. The N(0, 7']«2 ) component
of the mixture is meant to describe a small coefficient. We choose 7; so that if the coefficient
is in the interval (—37;,37;) it is so small that for practical purposes it might as well be zero.

The N(O, C?TJZ) is meant to describe “large”. This normal component should be sufficiently
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spread out to cover the full range of plausible coefficients (¢; > 1). The parameter p; may
then be interpreted as the probability that a coefficient is non-negligible. It is the percentage
of coeflicients at level j that we expect to be appreciably different from zero. Small values of
p; represent the idea of sparseness.

Note that we choose different values of the parameters at different levels (as illustrated in
Figure 4). For the ¢; and 7; this is natural, because whether a coefficient is small or large
depends in part on the height and width of the corresponding wavelet, which are related to the
resolution level. For the p;, we would expect a smaller percentage of the coefficients at higher
resolution levels to be large, suggesting that p; decrease as the resolution level increases.

To understand how the choice of hyperparameters relates to the ultimate shrinkage of the

empirical wavelet coefficient we write,

E(Ojklwik) = Ey e B0 klwse Vi)

Pr(vie = Hwjk)E(0jklwjk, vk = 1) + Pr(vs = 0w k) E(0; klw;k, vjk = 0)
2
(¢i7)? i

= Priv:. = 1lw: , Pr(vip = Olw; 1) —2—w: |
(Vi |W],k)02_|_(cj7_j)2w]7k+ (Vjk |%,k)02+7]2%,k

where P(v;r = 1l|w; ) is determined as equation 1 in section 4. The shrinkage function may

be interpreted as a smooth interpolation between two lines of slope

2
7 and (¢;75)°
o+ 77 o+ (¢;m)?

See Figure 2(a) .
When w; j, is small, this suggests that 6, x is small, so that then Pr(7;; = 0|w; ) is large. In

this case we see that the shrinkage function approximately follows a straight line with intercept

2

zero and slope U;TJT;) When 7; is small so is this slope. Thus, relatively small values of 7;

give us the flat portion of the shrinkage function around zero. When w; ; is large the shrinkage

(e575)°

function approximately follows a straight line with intercept zero and slope T For large
7'

c; this slope will be close to 1. Thus our shrinkage function is obtained as a weighted average
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of a linear function with a small slope and a linear function with a slope close to 1. As w;
increases, the weight on the line with the larger slope increases to 1. The parameters ¢; and 7;
determine the slopes of the two lines. Small values of p; will increase the width of the interval
about zero where the shrinkage function clings to the line with the smaller slope. Given 7; and
pj, increasing ¢; will shorten the interval in which the shrinkage function climbs from the line
with the smaller slope up to the line with the larger slope (making the flat portion larger). This
is because as c; increases the two alternative components of the mixture become more sharply

distinguished.

3.2 Default Choices for the Hyperparameters

In this section we describe our default choices for the hyperparameters. All of the examples we
present in this paper employ the defaults. The default choices are motivated by the discussion
in the previous section.

First of all, to choose 7; we must decide what a “small” coefficient is. Our basic equation
f = WT0 relates the coefficients to the function f. Let Wfk be the column of WT corresponding
to ;. The contribution of the (j, k) coefficient to f is then the vector Wfk%k. Since the
average of the components of Wfk will be zero (the discrete analogue of the requirement that all
wavelet functions integrate to zero), this contribution will be visually negligible if the maximum
value of W;{k%k is not much different from the minimum. Let M; = maxXo<;<n—1 Wf(z) and
mj = MiNg<;<n—1 W]:C(z), both of which depend only on 7 and not on k. Then the contribution
is small if (M; — m;); x is small. (M; —m;)§; is the maximum perturbation in f due to the
(j, k) coefficient. Let € be a perturbation in f which is considered to be negligible. Since our

prior places 8, in (—37;,37;) with high probability we choose 7; as,

€

37, = ———
7 M; —m;

In practice we have found that choosing € to be the first percentile of the set of values {|y;11 —
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yi| V=% works well,
Rather than choosing c¢; directly it is easier to choose the product ¢;7;. To choose ¢;7; we
must have an idea of what the range of plausible values are for the corresponding coefficients.

An application of Hélder’s inequality indicates that for f € L>(IR),

< il 1 zee = 272 1l N1l

[ F@ssta)da

Since 3¢;7; represents an upper bound on what we think of as ‘signal’ coefficients, we would set
3ejmj = 272 ||¢]|pa | fll s

if we had such information. Instead, we settle for the estimate

= 279/2||¢|| 11 [maxo<i<n—1 |¥il]

77 3

An approximation to |[1||;1 may be calculated by numerically computing %, using the method
of Daubechies (1988), for example. Note that using the maximum of the absolute value tends
to overestimate the sup norm of f, but we have found that results are not overly sensitive to
this choice. This use of the sup norm works best when the data first has its mean subtracted.

The value p; is the probability, at resolution level j, that a given wavelet coefficient 8; ;, will

contain ‘signal’. Donoho et al. (1995) have suggested the “universal threshold value”

t, =1/2log(n)o

as a probabilistic upper bound on the size of the ‘noise’ over all » empirical coefficients. Inter-

preting this value as a cut-point which separates ‘signal’ from ‘noise’, we define

b= #{wjk t lwikl > 1/21og(27) 8N oree}

J 97 ?

where



In other words, p; is just the proportion of empirical coefficients declared to contain ‘signal’
using the ‘\/2log(n)-rule’. Note that we could similarly use any other rule, such as the minimax
thresholds of Donoho and Johnstone (1994).

Throughout our discussion we have assumed that o2 is known. In practice we use a robust
estimate of ¢ and then plug that estimate into our procedure, acting as if the estimate were
the true value. Specifically, most coefficients at the highest resolution level j = J — 1 will be
‘noise’ i.e.,

wjx ~ Normal(0,0% + 77_) .

Hence we may estimate vyfise =./02+ 713 by

Noise  Mediangcpcor—1_1|ws_14
J-1 0.6745 ’

and then o as

& = /(050 — (7m0
In other words, our estimate of o, and the justification thereof, is similar to that of Donoho et

al. (1995), with the obvious adjustments made for the present context.

4 Means and Variances of Coefficients and Function Values

In this section we present the details for the computation of posterior means and variances.
With the assumption that o is known, simple closed form formulas are available for £(0; x|w; )
and Var(;r|w;x). Note that as a result of the independence postulated within our model, the
posterior covariance matrix of the vector of the 6, is a diagonal matrix, which we denote by
D. The posterior mean of f is then obtained from the linear wavelet transformation: E(f|y) =
WTE(8|lw). The covariance matrix of f is WTDW. We discuss an efficient computational
strategy for obtaining this matrix.

Although we concentrate on the first two moments in our inference we actually can obtain

the posterior distribution as a whole. To simplify the presentation of the formulas we will drop
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the j and k subscripts (so, for example, 8 refers to a single wavelet coefficient). We obtain
the posterior for 6 by first calculating the marginal posterior of v and then that of 6|y. The

marginal posterior for v may be shown to be

0
Ply=1w) =57 - (1)
where
pr(wly=1)

0=

(1-pm(wly=0) "
and 7(w|y = 1) ~ N(0,02 + 272) and 7(w|y = 0) ~ N(0,0% + 72).

The posterior distribution of # can then be expressed as

where F(f|w,y = 1) is the distribution function for

(c7)? o%(cr)?
] =1~ N 1
|w, v orma (02 m (CT)zw, P P

and F(f|lw,vy = 0) is the distribution function for

w
o2+ 7127 o272

2 2.2
0|w,’y:0~Normal( T o )
The posterior mean of 8 is then,

(07)2 0 72 1
E[6]o] = . . o
(O] laz—l—(m')2 O_|_1+02_|_7_2 O+1 ¥

The result is a multiplication of w by the shrinkage factor

(c7)? 0 N 72 1
o2+ (et)? O+1 o2+72 O41°7

s(w) =

where |s(w)| < 1, which is itself a function of w. The product ws(w) yields curves like that
shown in Figure 2(a). Hence, estimation of # via the posterior mean F[f|w] is equivalent to the

usage of a nonlinear shrinkage function.
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We now derive the posterior variance. Begin with the relation

Var(flw) = Ey[Var(flw, )]+ Var,(E[flw,7])

= By[Var(0lw,7)] + E[(E[6lw,7])"] = (E,[E[6]w,7]]))" -

The above results yield the expressions

o212 1 o?(ct)? 0

0'2—|-T2‘1—|-O+O'2—|-(CT)2‘1—|-O

E, [Var(8lw,7)] =

and

2 2 2 2
5 T o1 (eT) ‘ 0
(BBl = (a2+72“) vo " (a2+(cr)2“) 1+0
and, of course,

(B[E[flw. y1)* = (E[6]w])* .

For small values of w,

Var(f|w) ~ 72,

and for large values of w,

Var(flw) = a? .

In between these two extremes is where the variance is greatest, which makes intuitive sense:
This is precisely the range in which we are least sure whether an underlying coeflicient contains
‘signal’ or not. See Figure 2(b).

Given the first two moments of # (now let # and w denote vectors of the corresponding
wavelet coefficients) it is straightforward to compute the first two moments of f. Our recon-

struction, f, is the result of inverting the posterior mean vector E[f|lw] ie.,
f=WT(E[8w]) .
The covariance matrix for this reconstruction vector is just

A=WI'Dw |
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where D = diag{Var(f|w)}. Calculation of A may be accomplished in O(n?) operations, instead

of the expected O(n>) operations, by noting that
A=wWIpw = wiwTp)T

suggests that we compute the O(n) inverse wavelet transform of each of the n columns of D,
transpose the result, and repeat.

The matrix A may be viewed as a gray-scale image, and perhaps serve to give a visual
representation of the pattern of associations within f. Also, since typically A will be roughly a

diagonal matrix, we can augment our plot of f by plotting upper and lower bands

f + 3y/diag(A) .

Of course these intervals are not frequentist confidence intervals but point-wise, Bayesian poste-
rior intervals based on the assumed form of prior. They should still serve to give some indication
of variability. Note that for simplicity we use the bands based on the posterior variances even
though the posteriors of the individual wavelet coeflicients are bimodal. The reader is referred to
Brillinger (1994, 1995) and Bruce and Gao (1997) for derivations and examples of approximate

frequentist, point-wise confidence intervals in the context of wavelet shrinkage estimation.

5 Uncertainty Bands: An example.

In this section we consider a brief example to illustrate the quality of the uncertainty bands
discussed in section 4. In section 2 we saw that the high signal-to-noise ratio of the nuclear
magnetic resonance data lead to extremely tight uncertainty bands. In general, we would expect
that higher signal-to-noise ratios lead to more accurate reconstructions and tighter uncertainty
bands.

Figure 6(a) shows data and the ABWS reconstruction for the ‘Blocks’ signal of Donoho

et al. (1995). The signal-to-noise ratio, SD(f)/o, is 7. In Figure 6(b) is shown the upper
15



and lower uncertainty bands for this reconstruction, as well as the true underlying signal. As
expected, the reconstruction is quite accurate, displaying a minimum amount of noise and Gibbs
phenomena. Accordingly, the uncertainty bands are quite tight.

Similarly, Figure 7(a) shows data and the ABWS reconstruction for the ‘Blocks’ signal with
a signal-to-noise ratio of 1, while Figure 7(b) shows the uncertainty bands and the ‘Blocks’
signal itself. Considering that the underlying signal is difficult to distinguish with the human
eye, the ABWS reconstruction still does rather well. Even more encouraging is the fact that

the true signal is contained almost entirely within the uncertainty bands.

6 Simulations.

The standard VisuShrink (Donoho and Johnstone, 1994) approach to de-noising with wavelets
uses the soft-threshold function and the universal threshold. This approach is not intended to
minimize mean squared error, but rather to achieve a type of ‘near-minimax’ optimality. The
result is an estimator which achieves a low variance, at the expense of bias. In the SureShrink
approach (Donoho and Johnstone, 1995), the soft-threshold function is retained, but the univer-
sal threshold is used only at the highest resolution levels where the coeflicients contain primarily
noise. At lower resolution levels the thresholds are obtained by selecting a value which mini-
mizes an estimate of expected mean squared error (in the space of wavelet coefficients). Hence
the bias of the resulting estimator should be less than that of VisuShrink, at the expense of an
increase in variance.

Similarly, our Bayesian approach (ABWS) seeks to minimize mean squared error by using
the posterior mean. The resulting shrinkage functions typically appear to be smooth interpola-
tions of threshold functions. Hence we might expect properties similar to those of SureShrink.
A simulation study was conducted to compare the performance of these three estimators.

The four standard test functions of Donoho and Johnstone, i.e. ‘Bumps’, ‘Blocks’, ‘Doppler’,
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and ‘HeaviSine’, (generated using their WAvELAB software package) were used in the simula-
tion. Each function was sampled at N = 1024 points. Noise distributed as N(0,1) was added,
and reconstructions were created using VisuShrink, SureShrink, and ABWS. A total of 1000
trials were conducted for each of the four signals. In the VisuShrink reconstructions, de-noising
was done only down through resolution level j = 5. For the other two methods, de-noising was
done through the lowest possible resolution level, as dictated by the lengths of the correspond-
ing wavelet filters. For the function ‘Bumps’, Daubechies wavelets of order 3 were used; for
‘Blocks’, Haar wavelets; and for ‘Doppler’ and ‘HeaviSine’, most nearly symmetric Daubechies
wavelets of order 8.

In order to evaluate performance, we used estimates of the integrated mean squared error

[ E[(f(z)— f(x))% dx, and its decomposition into bias and variance components i.e.,

[E|(fn - @) | 4 = [£](f0) - Bli@N) ] do+ [ (B0 - )" do
= /Var(f(x)) dx—l—/BiasQ(f(w)) dz .

In Table 1 we give estimates of these three values (approximations of the integrals by sums over
the 1000 trials) for the four signals, and the three methods of reconstruction.

The simulations show that ABWS has uniformly smaller mean squared error over the four
test signals, with SureShrink second and VisuShrink third in the rankings. As expected, both
ABWS and SureShrink show marked improvements over VisuShrink in bias, but at the expense
of an increase in variance. Note that the proportional change in both bias and in variance
varies considerably across signals. Except for the case of the ‘HeaviSine’ signal, SureShrink
and ABWS tend to roughly double the variance to achieve reductions in bias ranging from
about 50% to less than 10% of the bias of VisuShrink. The least striking improvements over
VisuShrink occur in the ‘HeaviSine’ signal, the least spatially variable in some sense.

Compared to its more appropriate competitor, SureShrink, the ABWS method still exhibits
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a smaller bias across all four test functions, and a similar variance. The reconstruction of the
‘Blocks’ signal is especially striking, however, where ABWS has approximately 12% the bias
of SureShrink and only about 67% the variance. In fact, its variance is quite close to that of

VisuShrink, approximately 20% larger, while its bias is only 2% the size of that of VisuShrink !

7 Conclusion

In this paper, we have developed what amounts to a class of shrinkage functions for wavelet
shrinkage by approaching the standard context from a Bayesian point of view. An automatic
method has been proposed whereby a set of level-dependent shrinkage functions may be chosen
adaptively for a given dataset. Using this method, our experience has been that as the resolution
level decreases, the chosen shrinkage functions approach, and sometimes become, the identity
function i.e., no shrinkage is done (e.g. see Figure 4). This result indicates that not only are the
shrinkage functions chosen adaptively, but where we stop shrinking is also chosen adaptively.
In principle, our method even might choose to not shrink at a given resolution level, and yet
shrink slightly at a lower level if deemed necessary.

Additionally, we have offered a method by which the uncertainty in a reconstruction may
be quantified and displayed. The method is simple, both conceptually and computationally.
The posterior variance functions upon which this method is based are also interesting in and
of themselves, as they indicate where in the process of shrinkage one is more (or less) sure of a
particular value.

In general, we believe the Bayesian approach to wavelet shrinkage offers a conceptually
simple way to obtain intuitively appealing shrinkage functions. Our goal in this paper is to
choose a prior in a way that is simple and yet reflects the structure of the wavelet problem.
Other choices of prior may also lead to reasonable results. For example, Clyde, Parmigiani,

and Vidakovic (1996) specify a mixture prior similar to ours, but the small component (our

18



N(0,7?)) is simply a point mass at zero. In addition, Clyde et al. place a prior on o (rather
than assuming it known or estimable), and use Monte Carlo methods in their calculations as
a result. On the non-Bayesian side, most efforts have been aimed at adaptively estimating
thresholds in the soft-thresholding approach. Besides SureShrink, cross-validation has been
used by Nason (1996), Wang (1994), and Weyrich and Warhola (1994). In a slightly different
direction, Hall and Patil (1995) introduce a pseudo-bandwidth (‘primary resolution’) parameter
into their formulation of the model.

An interesting extension to this work would be to incorporate the fact that wavelets at
different levels, but at the same relative position, are similarly large or small, depending on the
underlying function f. One should be able to incorporate such information into the prior dis-
tribution. Rather than the current independent priors on v’s and 8’s, correlations could express
beliefs about such relations. This would borrow strength from different levels of coefficients,
and might prove useful in, for example, edge detection in image processing applications. We
note, however, that priors that are not independent will likely increase the level of computation

required.
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Figure 1: (a): Two zero-mean normal density functions, one concentrated (—) and the other

diffuse (——). (b): Mixture of the normal distributions in (a), with p = 0.5.
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Figure 2: (a) and (b): Posterior mean, E[f|w], and variance, Var(f|w), as functions of the
empirical wavelet coefficient w. Hyperparameters were chosen as 7 = 0.1, ¢ = 500, and p = 0.05,

while o was fixed at 1.
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Figure 3: (a): Nuclear magnetic resonance spectrum. (Provided in the WAVELAB software

package. Source: Andrew Maudsley, Ph.D., Dept. of Radiology, University of California, San
Francisco.) (b-d): Reconstructions using ABWS, VisuShrink, and SureShrink, respectively.

23



-4+ / 4

Figure 4: Shrinkage functions for nuclear magnetic resonance data, for resolution levels j =

2,...,9.
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Figure 5: ABWS reconstruction of nuclear magnetic resonance data, with upper and lower

uncertainty bands.
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Figure 6: (a): Data and ABWS reconstruction (using Haar wavelets) for the signal ‘Blocks’

(SNR=T7). (b): True function ‘Blocks’ (—), with upper and lower uncertainty bands (——).
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Figure 7: (a): Data and ABWS reconstruction for the signal ‘Blocks” (SNR=1). (b): True
function ‘Blocks” (—), with upper and lower uncertainty bands (——). (Note: The SNR here
and in Figure 6 was regulated by scaling the underlying signal, thus changing the range used

in plotting.)
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BUMPS BLOCKS
Method Variance Bias?® MSE Variance  Bias? MSE

Visu 0.1165  1.4543 1.5707 0.0719  0.6122 0.6840

Sure 0.2660  0.4167 0.6827 0.1369  0.0856 0.2225

ABWS 0.2228  0.1267 0.3495 0.0874  0.0121 0.0995
DOPPLER HEAVISINE

Method Variance Bias? MSE Variance Bias? MSE

Visu 0.0523  0.4327 0.4850 0.0339  0.0864 0.1204
Sure 0.0946  0.1340 0.2285 0.0416  0.0534 0.0949
ABWS 0.1006  0.0640 0.1646 0.0442  0.0433 0.0874

Table 1: Simulation results comparing ABWS, VisuShrink, and SureShrink with respect to
mean squared error performance and its decomposition into bias and variance components.

Numerical values are based on 1000 trials.
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