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2 Time-frequency Analysis of Musical Rhythm

Introduction

We shall use the mathematical techniques of Gabor transforms and costiwagelet transforms to analyze
the rhythmic structure of music and its interaction with melodic structure. Thissinagveals the hierarchical
structure of rhythm. Hierarchical structure is common to rhythmic perforesticoughout the world’s music.
The work described here is interdisciplinary and experimental. We use matigs to aid in the understanding
of the structure of music, and have developed mathematical tools which (vatitmmpletely finished) have
shown themselves to be useful for this musical analysis. We aim to expl@® vdéh this paper, to provoke
thought, not to present completely finished work.

The paper is organized as follows. We first summarize the mathematical medtii@abor transforms
(also known as short-time Fourier transforms, or spectrograms). 8geains provide a tool for visualizing
the patterns of time-frequency structures within a musical passage. Weethew the method of percussion
scalograms, a new technique for analyzing rhythm introduced in [34ferAlfiat, we show how percussion
scalograms are used to analyze percussion passages and rhythmrryMeut&our analyses of percussion
passages from a variety of music styles (rock drumming, African drummirdyjezz drumming). We also
explore three examples of the connection between rhythm and melody (pifarz piece, a Bach piano
transcription, and a jazz orchestration). These examples provide emjisitifcation of our method. Finally,
we explain how the parameters for percussion scalograms are choseeiinmprovide a satisfactory display
of the pulse trains that characterize a percussion passage (a keyrmrhpbour method). A brief concluding
section provides some ideas for future research.

Gabor transforms and music

We briefly review the widely employed method of Gabor transforms [17], latmvn as short-time Fourier
transforms, or spectrograms, or sonograms. The first comprebeaaf&wvt in employing spectrograms in mu-
sical analysis was Robert Cogan’s masterpiéy Images of Musical Soulf@] — a book that still deserves
close study. In [12, 13], Drfler describes the fundamental mathematical aspects of using Galsfotras
for musical analysis. Two other sources for applications of short-timeiémwansforms are [31, 25]. There
is also considerable mathematical background in [15, 16, 19], with mugipétations in [14]. Using sono-
grams or spectrograms for analyzing the music of bird song is describ2d,iB(, 26]. The theory of Gabor
transforms is discussed in complete detail in [15, 16, 19], with focus on itsadésaspects in [1, 34]. However,
to fix our notations for subsequent work, we briefly describe this theory

The sound signals that we analyze are all digital, hence discrete, sswa@that a sound signal has the
form { f(tx)}, for uniformly spaced valuefg, = kAt in a finite interval[0, T]. A Gabor transform off, with
window functionw, is defined as follows. First, multiplyf(t¢x)} by a sequence of shifted window functions
{w(ty — 70)}2L,, producing time localized subsignalsf(t;)w(t; — 7¢)}22,. Uniformly spaced time values,
{1 = tjg}é‘io are used for the shiftg peing a positive integer greater thin The windows{w (¢, — Tg)}gj\io
are all compactly supported and overlap each other. See Figure 1. allree of M is determined by the
minimum number of windows needed to coVerT], as illustrated in Figure 1(b).

Second, becauseis compactly supported, we treat each subsiduiét; )w(t, — )} as a finite sequence
and apply an FFTF to it. (A good, brief explanation of how FFTs are used for frequen@jyais can be
found in [1].) This yields the Gabor transform of (¢ )}

{F{Ft)w(ty — 1)} 3L 1)

Note that because the valugsbelong to the finite intervgD, T'], we always extend our signal values beyond
the interval’'s endpoints by appending zeroes, hence the full supg@iismondows are included.
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FIGURE 1 (a) Signal. (b) Succession of shifted window functions. (c) Signal midtigpy middle window in (b); an FFT can now
be applied to this windowed signal.

The Gabor transform that we employ usaBlackman windovdefined by

) 0.42 + 0.5 cos(2mt/X) + 0.08 cos(4nt/N)  for [t] < N\/2
w =
0 for |t] > A\/2

for a positive parametex equalling the width of the window where the FFT is performed. The Fouriastra
form of the Blackman window is very nearly positive (negative valuestlems10~* in size), thus providing
an effective substitute for a Gaussian function (which is well-known t@ mainimum time-frequency sup-
port). See Figure 2. Further evidence of the advantages of Blackrmatowing is provided in [3, Table I1].
In Figure 2(b) we illustrate that for each windowing ¢, — 7,,,) we finely partition the frequency axis into
thin rectangular bands lying above the support of the window. This peewvadthin rectangular partition of
the (slightly smeared) spectrum gfover the support ofv(¢;, — 7,,,) for eachm. The efficacy of these Gabor
transforms is shown by how well they produce time-frequency portraitsateord well with our auditory
perception, which is described in the vast literature on Gabor transfoanwéhbriefly summarized above.

It is interesting to listen to the sound created by the three Gabor atoms in FignreYdu can watch a
video of the spectrogram being traced out while the sound is played by twthe following web page:

http://ww. unec. edu/ wal ker j s/ TFAMRViI deos/ (2)

and selecting the video faeabor Atoms The sound of the atoms is of three successive pure tones, on an
ascending scale. The sound occurs precisely when the cursoestbgsthin dark bands in the spectrogram,
and our aural perception of a constant pitch matches perfectly with thetagdrdarkness of the thin bands.
These Gabor atoms are, in fact, good examplésdifidual notesMuch better examples of notes, in fact, than
the infinitely extending (both in past and future) sines and cosines uséassiaal Fourier analysis. Because
they are good examples of pure tone notes, these Gabor atoms are é¢xeelting blocks for music.

We shall provide some new examples that further illustrate the effectiveridbese Gabor transforms.
For all of our examples, we usdd24 point FFTs, based on windows of suppgytl /8 sec with a shift of
AT =~ 0.008 sec. These time-values are usually short enough to capture the esfitiads of musical
frequency change.

In Figure 3 we show three basic examples of spectrograms of music.aPaftthe figure shows a spec-
trogram of a clip from a rock drum solo. Notice that the spectrogramistsnsf dark vertical swatches, these
swatches correspond to the striking of the drum, which can be verifiecitghing a video of the spectrogram
[go to the website in (2) and select the videock Drum Solp As the cursor traces over the spectrogram in
the video, you will hear the sound of the drum strikes during the times wheeutiser is crossing a vertical
swatch. The reason why the spectrogram consists of these verticghswawill be explained in the next
section.

Part (b) of Figure 3 shows a spectrogram of a recording of foursnaleeyed on a piano scale. Here the
spectrogram shows two features. Its main feature is a set of four sectimsisting of groups of horizontal
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FIGURE 2 (a) Blackman windowA = 1. Notice that it closely resembles the classic Gabor window—a bell cuseribed by a
Gaussian exponential—but it has the advantage of compact suppdrimi-frequency representation—the units along the horizontal
are in seconds, along the vertical are in Hz—of three Blackman windawspiied by the real part of the kernel®™"*/~ of the
FFT used in a Gabor transform, for three different frequency gatludcach horizontal bar accounts f@9.99% of the energy of the
cosine-modulated Blackman window (Gabor atom) graphed below it.

line segments placed vertically above each other. These vertical sesbsrofhorizontal segments are the
fundamentals and overtones of the piano notes. There are also thinhstitehes located at the beginning of
each note. They are the percussive attacks of the notes (the pian@ig, tldssed as a percussive instrument).

Part (c) of Figure 3 shows a spectrogram of a clip from a piano verdi@anfamous Bach melody. This
spectrogram is much more complex, rhythmically and melodically than the first assages. Its melodic
complexity consists in itpolyphonicnature: the vertical series of horizontal segments are due to three-note
chordsbeing played on the treble scale and also individual notes played as qminteon the bass scate.
[This contrasts with the single notes in thnophonigassage in (b).] We will analyze the rhythm of this
Bach melody in Example 5 below.
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(a) Drum Clip (b) Piano scale notes (c) Bach melody

FIGURE 3 Three spectrograms. (a) Spectrogram of a drum solo from a raxk ¢b) Notes along a piano scale. (c) Spectrogram
of a piano solo from a Bach melody.

The chord structure and counterpoint can be determined either Hyldisning or by examining the score [2].
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Scalograms, percussion scalograms, and rhythm

In this section we briefly review the method of scalograms (continuous wavatesforms) and then discuss
the method of percussion scalograms.

Scalograms

The theory of continuous wavelet transforms is well-established [1T]822CWT differs from a spectrogram
in that it does not use translations of a window of fixed width, instead it wiaaslations of differently sized
dilations of a window. These dilations induce a logarithmic division of the feqy axis. The discrete
calculation of a CWT that we use is described in [1, Section 4]. We shalltoigfly review the definition of
the CWT in order to fix our notation. We then use it to analyze percussion.

Given a function¥, called thewavelet the continuous wavelet transforivy [ f] of a sound signaf is

defined as
t—T

Walfl(r,s) = \1[ / T e Ty ar 3)

for scales > 0 andtime-translationr. For the function¥ in the integrand of (3), the variableproduces a
dilation and the variable produces a translation.

We omit various technicalities concerning the types of functibrikat are suitable as wavelets; see [8, 10,
27]. In[8, 11], Equation (3) is derived from a simple analogy with the taenically structured response of
our ear’s basilar membrane to a sound stimuflus

We now discretize Equation (3). First, we assume that the sound gignas non-zero only over the time
interval [0, T'. Hence (3) becomes

S

T -7
Ww[f}(T,S)—\}g / row=Tyar.

S

We then make a Riemann sum approximation to this last integral using mAt, with uniform spacing
At = T/N; and discretize the time variabte usingr, = kAt. This yields

T 1 N-1
Walfl(7i8) & 55 7= >, f(tm) ¥ ([t = 7]s71). (@)
m=0

The sum in (4) is a correlation of two discrete sequences. Givem\iwaint discrete sequencég } and
{WU}, theircorrelation{(f : W)} is defined by

N-1
m=0

[Note: For the sum in (5) to make sense, the sequéfigg is periodically extendedsia ¥ _, := ¥ _x.]

Thus, Equations (4) and (5) show that the CWT, at each sc@approximated by a multiple of a discrete
correlation of{ f, = f(t;)} and{¥; = s~1/2¥(t;s~!)}. These discrete correlations are computed over a
range of discrete values ef typically

s=2""  r=0,1,2,...,1-J (6)

where the positive integdris called the number afctavesand the positive integef is called the number of
voicesper octave. For example, the choicetafctaves and2 voices corresponds—based on the relationship
between scales and frequencies described below—to the equal-terapalieedsed for pianos.
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The CWTs that we use are based on Gabor wavelets&GaBor waveletwith width parametetw and
frequency paramete, is defined as follows:

\Il(t) _ wfl/Zefﬂ(t/w)zeiQWVt/w' @)

Notice that the complex exponentidP™!/« has frequency /w. We callv/w the base frequencyit corre-
sponds to the largest scale= 1. The bell-shaped factas—1/2¢="(t/«)* in (7) damps down the oscillations
of ¥, so that their amplitude is significant only within a finite region centered-at0. See Figures 13 and
14. Since the scale parameteis used in a reciprocal fashion in Equation (3), it follows that the recgdroc
scalel/s will control the frequency of oscillations of the functiarm'/2¥(¢/s) used in Equation (3). Thus,
frequency is described in terms of the parameéfer which Equation (6) shows is logarithmically scaled. This
point is carefully discussed in [1] and [34, Chap. 6], where Gabalogtams are shown to provide a method
of zooming in on selected regions of a spectrogram.

Pulse trains and percussion scalograms

The method of using Gabor scalograms for analyzing percussion segguens introduced by Smith in [32],
and described empirically in considerable detail in [33]. The method desthipp Smith involved pulse trains
generated from the sound signal itself. Our method is based on the gpaotrof the signal, which reduces
the number of samples and hence speeds up the computation, making ibfagh éor real-time applications.
(An alternative method based on an FFT of the whole signalptiase vocodeis described in [31].)

Our discussion will focus on a particular percussion sequence. Tdggree is a passage from the song,
Dance Around.Go to the URL in (2) and select the videdance Around percussiong hear this passage.
Listening to this passage you will hear several groups of drum beatsy alith some shifts in tempo. This
passage illustrates the basic principles underlying our approach.

In Figure 4(a) we show the spectrogram of ance Aroundclip. This spectrogram is composed of a
sequence of thick vertical segments, which we will e@itical swatchesEach vertical swatch corresponds
to a percussive strike on a drum. These sharp strikes on drum heatisaegontinuum of frequencies rather
than a discrete tonal sequence of fundamentals and overtones. 8elausapid onset and decay of these
sharp strikes produce approximate delta function pulses—and a deltafupalse has an FFT that consists
of a constant value for all frequencies—it follows that these strike d@pmoduce vertical swatches in the
time-frequency plane.

Our percussion scalogram method has the following two parts:

I. Pulse train generationWe generate a “pulse train,” a sequence of subintervalsvalues and-values
[see the graph at the bottom of Figure 4(a)]. The rectangular-shmpees in this pulse train correspond
to sharp onset and decay of transient bursts in the percussion sigphkg just above the pulse train.
The widths of these pulses are approximately equal to the widths of the Vextiaiches shown in the
spectrogram. Most importantly, the location and duration of the intervalsvalues corresponds to
our hearing of the drum strikes, while the location and duration of the irlteo¥&-values corresponds
to the silences between the strikes. In Step 1 of the method below we deswmritibif pulse train is
generated.

Il1. Gabor CWTWe use a Gabor CWT to analyze the pulse train. This CWT calculation is pegtbm
Step 2 of the method. The rationale for performing a CWT is that the pulse trastép function analog
of a sinusoidal of varying frequency. Because of this analogy betvezapo of the pulses and frequency
in sinusoidal curves, we employ a Gabor CWT for analysis. As an exasgaethe scalogram plotted
in Figure 4(b). The thick vertical line segments at the top half of the scatogmarespond to the drum
strikes, and these segments flow downward and connect together. Wihiridtle of the time-interval
for the scalogram, these drum strike groups join together over four le¥élierarchy (see Figure 5).
Listening to this passage, you can perceive each level of this hierarchy
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FIGURE 4 Calculating a percussion scalogram for bence Aroundsound clip. (a) Spectrogram of sound waveform with its pulse
train graphed below it. (b) Percussion scalogram and the pulse trainegt@bove it. The dark region labeled Gycorresponds to a
collection of drum strikes that we hear as a group, and within that graupther subgroups over shorter time scales that are indicated
by the splitting of groupG into smaller dark blobs as one goes upwards in the percussion scalfijos® subgroups are also aurally
perceptible). See Figure 5 for a better view®f

Now that we have outlined the basis for the percussion scalogram methadnist it in detail. The percus-
sion scalogram method for analyzing percussive rhythm consists abitbeving two steps.

Per cussion Scalogram M ethod

Step 1. Let {g(7m,yr)} be the spectrogram image, like in Figure 4(b). Calculate the avgrager all
frequencies at each time-valug:

P—1
9(Tm) = B Z 9(Tm,yx), (WhereP is the total number of frequencigs), (8)
k=0
and denote the average @by A:
M
1 _
A= M+1"§)9(Tm)- ©)

Then the pulse traifP(r,,,) } is defined by

P(Tm) = 1{7'k :g(‘rk)>A}(Tm)‘ (10)
wherel is the indicator functior. The valuegP(r,,,)} describe a pulse train whose intervald efalues
mark off the position and duration of the vertical swatches (hence of tiva dirikes). See Figure 6.

Step 2. Compute a Gabor CWT of the pulse train sigfi&l(7,,,) } from Step 1This Gabor CWT provides
an objective picture of the varying rhythms within a percussion performanc

?The indicator functioris for a setS is defined byls(t) = 1 whent € S and1s(t) = 0 whent ¢ S.
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FIGURE 5 A rhythm hierarchy, obtained from the region correspondin@tm Figure 4. The hierarchy has two parts, labeted
andg. In each part the top level, Level 1, comprises the individual strikbes& strikes merge at Level 2 into regions corresponding to
double strikes, and which are aurally perceptible as groupings of detrtdes. Notice that the Level 2 regions fétie at positions of
slightly increasing then decreasing strike-frequency as time procteslss aurally perceptible when listening to the passage. There
is also a Level 3 region far which merges with the Level 2 regions f8rto comprise the largest grous.

Remarks (a) For the time intervals corresponding to vertical swatches, equationsd&®aproduce values

of g that lie above the averagé (becaused is pulled down by the intervals of silence). See Figure 6(a). For
some signals, where the volume level is not relatively constant (loudsages interspersed with quieter
passages) the total averadewill be too high (the quieter passages will not contribute to the pulse train). We
should instead be computing local averages over several (but not altvtilmes. We leave this as a goal
for subsequent research. In a large number of cases, such asdibogssed in this article, we have found
that the method described above is adequéig For theDance Aroundpassage, the entire frequency range
was used, as it consists entirely of vertical swatches corresponding pethussive strikes. When analyzing
other percussive passages, we may have to isolate a particular fcgqaege that contains just the vertical
swatches of the drum strikes. We illustrate this later in the musical examplessamtade(see the next section,
Examples of rhythmic analysis). (c) We leave it as an exercise for the reader to show that the calculation of
g(mm) can actually be done in the time-domain using the data from the windowed sejoaby (Hint: Use
Parseval's theorem.) We chose to use the spectrogram values beidhesesase of interpretation—especially
when processing needs to be done, such as using only a particulzrisyrange. The spectrogram provides
a lot of information to aid in the processin{d) Some readers may wonder why we have computed a Gabor
CWT in Step 2. Why not compute, say, a Haar CWT (which is based on awtetidn as wavelet)? We
have found that a Haar CWT does provide essentially the same informattbe msgnitudesf the Gabor
CWT (which is all we use in this article; using the phases of the complex-v&abdr CWT is left for future
research). However, the Haar CWT is more difficult to interpret, as shiowigure 7.

We have already discussed the percussion scalogram in Figure 4ésh&ll continue this discussion,
and provide several more examples of our method in the next sectionchrcaae, we find that a percussion
scalogram allows us to finely analyze the rhythmic structure of percussguesces.
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FIGURE 6 Creation of a pulse train. On the left we show the graph fodm equation (8) for the spectrogram of thance Around
sound clip [see Figure 4(a)], which we have normalized to have amageafA = 1. The horizontal line is the graph of the constant
function1. The pulse train, shown on the right, is then created by assigning the valhen the graph of is larger thanA, and0
otherwise.

Examples of rhythmic analysis

As discussed in the previous section, a percussion scalogram allowperséive a hierarchal organization of
the strikes in a percussion sequence. Hierarchical structures within,raggecially within rhythmic passages
and melodic contours, is a well-known phenomenon. For example, in ariagénieg and thought-provoking

book [24] with an excellent bibliographyrhis Is Your Brain On MusicPaniel Levitin says in regards to

musical production (p. 154):

Our memory for music involves hierarchical encoding—not all words quely salient, and not
all parts of a musical piece hold equal status. We have certain entry pothexé points that
correspond to specific phrases in the music. . . Experiments with musiciemstiafirmed this
notion of hierarchical encoding in other ways. Most musicians cannatséging a piece of
music they know at any arbitrary location; musicians learn music accordingigyarchical
phrase structure. Groups of notes form units of practice, these smailigate combined into
larger units, and ultimately into phrases; phrases are combined into steustunte as verses and
choruses of movements, and ultimately everything is strung together as a Ipiesea

In a similar vein, related to musical theory, Steven Pinker summarizes the fanevaschical theory of Jack-
endoff and Lerdahl [23, 22] in his fascinating boblgw The Mind Work§28, pp. 532-533]:

Jackendoff and Lerdahl show how melodies are formed by sequehp#shes that are
organized in three different ways, all at the same time. .. The firstgeptation is a grouping
structure. The listener feels that groups of notes hang together in mdtifsh w turn are
grouped into lines or sections, which are grouped into stanzas, movemet{sieces. This
hierarchical tree is similar to a phrase structure of a sentence, and whem#ic has lyrics the
two partly line up...The second representation is a metrical structure, tretirepsequence of
strong and weak beats that we count off as “ONE-two-THREE-fdué overall pattern is
summed up in musical notation as the time signature. .. The third representati@uistonal
structure. It dissects the melody into essential parts and ornaments. imeeotts are stripped
off and the essential parts further dissected into even more essentiaapdrornaments on
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them. .. we sense it when we recognize variations of a piece in classical onjszz. The
skeleton of the melody is conserved while the ornaments differ from varitdigariation.

'l

(@)

FIGURE 7 (a) Magnitudes of Gabor CWT of a pulse sequence. (b) Haar CWT cfathee pulse sequence.

In regard to the strong and weak beats referred to by Pinker, wevebtd®t these are reflected by the
relative thickness and darkness of the vertical segments in a percasalogram. For example, when listening
to theDance aroundhassage, the darker groups of strikes in the percussion scalogramscseorrelate with
loudness of the striking. This seems counterintuitive, since the pulse tnagist®only ofd’'s and1’s, which
would not seem to reflect varying loudness. This phenomenon carplared as follows. When a pulse is
very long, that requires a more energetic striking of the drum, and this mergetic playing translates into a
louder sound. The longer pulses correspond to darker spots lower @lothe scalogram, and we hear these
as louder sounds. (The other way that darker spots appear lowerigiinvgrouping of several strikes. We do
not hear them necessarily as louder individual sounds, but taketh&ygbey account for more energy than
single, narrow pulses individually.)

With these descriptions of the hierarchical structure of music in mind, we nowtdurepresentations of
them within four different percussion sequences.

Example 1: Rock drumming

In Figure 8 we show a percussion scalogram for a clip from a rock dalm which we have partially analyzed
in the previous section. Here we complete our analysis by describing tleedtigrshown in the scalogram in
a more formal, mathematical way, and then introducing the notigmaafuction ruledor the performance of
the percussion sequence.

We can see that there are five separate groupings of drum strikes tatbhgram in Figure 8:

A B C B’ C’

(1-level) (2-levels) (4-levels) (2-levels) (4-levels)

The separate hierarchies within these groupings can be symbolized inlitveirfg way. We use the
notation+ to symbolize a “whole note,” a longer duration, more emphasized strike. Anddtations to
symbolize a “half note,” a shorter duration, less emphasized strike. Thigsalle to symbolize the different
emphases in the rhythm. Furthermore, the underscore symbwill be used to denote a rest between strikes
(notes). For example! _« symbolizes a half note followed by a rest followed by a whole note. Using this
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notation, the strikes in Figure 8 are symbolized by
I B N N I e e e v S S e R R R R

This notation is essentially equivalent to the standard notation for drumminbimseusical scores (for ex-
amples of this notation, see [29] and [5]). We have thus shown thatgmotuscalograms can be used to read
off a musical score for the drumming from its recorded sound. This is impoeecause percussion playing
is often extemporaneous, hence there is a need for notating particularlstamipextemporaneous passages as
an aid to their repetition by other performers.

There is, however, much more information in a percussion scalogram. Mstause parentheses to mark
off the groupings of the notes into their hierarchies, as follows:

A (A ) (A GO ) ) ) () ) ()

The advantage of this notation over the previous one is that the hierdrghicgings of notes is indicated.
We believe this enhanced notation, along with the videos that we createraf wathh percussion scalograms
provide an important tool for analyzing the performance of percusstguences. For example, they may be
useful in teaching performance technique (recall Levitin's discussidmaf musicians learn to play musi-
cal passages) by adding two adjuncts, notation plus video, to aid the eardeiging subtle differences in

performance technique.
A_ B C B’ c

FIGURE 8 Percussion scalogram for rock drumming. The labels are explainedamgde 1. To view a video of the percussion
scalogram being traced out along with the drumming sound, go to the URY) an¢l select the video f@ance Around percussion.

In addition to this symbolic notation for percussion passages, there is amdegper (and somewhat con-
troversial) notion ofproduction rulesfor the generation of these percussion sequences (analogous to Chom-
sky’s notion of “deep structure” in linguistics that generates, via priionicules, the syntactical hierarchy of
sentences: [22, Section 11.4] and [7, Sections 5.2, 5.3]). Examplessef thles in music are described in [22,
pp. 283-285, and p. 280]. Rather than giving a complete mathematicaipdiescat this time, we will simply
give a couple of examples. For instance, the grough@ the passage is produced from the groupihdoy
clipping two strikes off the end:

B' — End(B)

As another example, if we look at the starting notes in the graupedC’ defined by

Start(C) = A4 ) and  Start(C) = A #)
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thenStart(C”) is produced fronstart(C') by a modulation of emphases:
Start(C") < Modulation(Start(C))

In this paper we are only giving these two examples of production rulesdar to give a flavor of the idea. A
more complete discussion is a topic for a future paper.

Example 2: African drumming

Our second example is a passage of African drumming, clipped from thientireg of the song/MVelelafrom
an album by Miriam Makeba. In this case, the spectrogram of the passtagen in Figure 9(a), has some
horizontal banding at lower frequencies that adversely affect theupsion scalogram by raising the mean
value of the spectrogram averages. Consequently, we used onlg ¥edoe the spectrogram that are above
1000 Hz to compute the percussion scalogram shown in Figure 9(b). By listenitng tadeo referenced in
the caption of Figure 9, you should find that this percussion scalograesiaturately capture the timing and
grouping of the drum strikes in the passage.

This passage is quite interesting in that it is comprised of @flgrum strikes, yet we shall see that it
contains a wealth of complexity. First, we can see that there are sevaatseg@upings of drum strikes in
the scalogram in Figure 9:

A B C A B C D
(1-level) (3-level) (3-level) (1-level) (3-level) (3-level) (2-level)

Notice the interweaving of different numbers of levels within this sequehgmaps. Second, the drum strikes
can be notated with hierarchical grouping as follows:

A (G _ (D) (D EEY) A () (G D))

This passage is interesting not only in terms of the complex hierarchicabiggpaf notes, but also because of
the arrangement of the time intervals between notes. It is a well-knownrfamigimusicians that the silences
between notes are at least as important as the notes themselves. In thiepessave the following sequence
of time-intervals between notes (1 representing a short rest, 2 repngsanong rest, and 0 representing no
rest):

2011100022011100010

which quantitatively describes the “staggered” sound of the drum gasfEhe reader might find it interesting
to compute the sequence of rests for Example 1, and verify that it is leggestag with longer sequences of
either1l’s or 0’s.]

Example 3: Jazz drumming

In this example we consider a couple of cases of jazz drumming. In Figed W@ show a percussion
scalogram created from the drum solo at the beginning of the jazz cl&sicSing SingThe tempo of this
drumming is very fast. Our notation for this sequence was obtained fromieixeay the percussion scalogram
both as a picture and as the video sequence (referred to in the captiom fagute) is played. Here is the
notated sequence:

Very fast

o R e e e R e D O D D B
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A B c A B C

i E 1000 ‘k
110
(b)

BC BCD
FIGURE 9 (a) Spectrogram for African drumming. Betwe8rand 1000 Hz, as marked on the right side of (a), there are a
considerable number of horizontal line segments. Those segmergssalyvaffect the percussion scalogram. Consequently only
frequencies abov&é000 Hz are used to create the percussion scalogram. (b) Percussiogracalfor African drumming, using
frequencies above000 Hz. The labels are explained in Example 2. To view a video of the percussalogram being traced out
along with the drumming sound, go to the URL in (2) and select the vided/&ela percussion.

Our notation differs considerably from the notation given for this begmdium solo in the original score [29],
the first several notes being:

Jungle Drum Swing
Add 4

Setting aside its’ racist overtones, we observe that this tempo instruction terribly precise. We can see
from comparing these two scores, that the drummer (Gene Krupa) is imipigothe percussion (as is typical
with jazz). Our percussion scalogram method allows us to derive a premtzgon for Krupa’s improvisation.
We leave it as an exercise for the reader to notate the hierarchical stro€this drum passage, based on the
percussion scalogram. From our notation above, we find that the pafterst® in Krupa's playing has this
structure:

20111012211212110001201

Here, as with the African drumming, we see a staggered pattern of rests.
Our second example of jazz drumming is a clip of the beginning percussssaga from another jazz
classic,Unsquare Dance.ln the score for the piece [5], the following pattern of strikes (indicatetaasl

clapping T

is repeated in each measure (consistent withrfhetime signature). Listening to the passage as the video is
played, we can hear this repeated series of “strikes” as groupsyofastrindividual strikings of drumsticks.
The drummer (Joe Morello) is improvising on the notated score by replacimgdndl hand claps by these
very rapid strikings of his drumsticks. It is noteworthy that, in many instartespercussion scalogram is
sensitive enough to record the timings of the individual drumstick strikingee Scalogram is thus able to
reveal, in a visual representation, the double aspect to the rhythm: indivddum strikings within the larger
groupings notated as hand claps in the original score.

These examples are meant to illustrate that the percussion scalogram nesthmdvdde useful musical
analyses of drumming rhythms. Several more examples are givenRitthees of Musiavebsite [6]. We now



14 Time-frequency Analysis of Musical Rhythm

FIGURE 10 (a) Percussion scalogram for drum solimg Sing Singising frequencies abou®00 Hz. (b) Percussion scalogram
for complex drum stick percussion iinsquare Danceising frequencies aboa900 Hz. To view videos of these percussion scalo-
grams being traced out along with the drumming sound, go to the URL im(2}elect the videos f@ing Sing Sing percussian
Unsquare Dance percussion.

provide some examples of using both spectrograms and percussiorraoadg analyze both the melodic and
rhythmic aspects of music. Because they are based on an assumption & iptésing in the musical signal
due to percussion, which is only satisfied for some tonal instruments, gswouscalograms do not always
provide accurate results for tonal instruments. However, when theyaldde accurate results (a precise
description of the timings of the notes), they reveal the rhythmic structure@ehtisic (which is our goal). We
now provide three examples of successful analyses of melody andrrhyth

Example 4. A Jazz Piano Melody

In Figure 11(a) we show a percussion scalogram of a recording @aggjano improvisation by Erroll Garner.

It was captured from a live recording [18]. Since this is an improvisatioere is no musical score for the
passage. Several aspects of the scalogram are clearly evidentw€icsiy see a staggered spacing of rests as in
the African drumming in Example 2 and the jazz drumming inSireg Sing Singassage in Example 3. There

is also a syncopation in the melody, indicated by the interval magkedFigure 11(a). By syncopation we
mean an altered rhythm, “ONE-two-three-FOUR,” rather than the more comi@NE-two-THREE-four.”

The percussion scalogram provides us with a visual representatiors# #ffects, which is an aid to our
listening comprehension. Although the percussion scalogram does nfiotnpgerfectly here (for example
the last note in the sequence marl&s split in two at the top (the scalogram has detected the attack and the
decay of the note), when viewed as a video the percussion scalogesredable us to quickly identify the
timing and hierarchical grouping of the notes (which would be much moreulifiising only our ears).

Example 5: A Bach Piano Transcription

As a simple contrast to the previous example, we briefly discuss the pemtsssalogram shown in Fig-
ure 11(b), obtained from a piano interpretation of a Bach meldésy, Joy of Man’s DesiringThe sound
recording used was created from a MIDI sequence. In contrast forévious jazz piece, this classical piece
shows no staggering of rests, and no syncopation. The hierarchgubiggs of notes is also more symmetri-
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Iy

(@) (b)

FIGURE 11 (a) Percussion scalogram of a clip from an Erroll Garner jazz piassgue (using frequencies abagd0 Hz). To
view a video of the percussion scalogram being traced out along with the playing, go to the URL in (2) and select the video for
Erroll Garner piano recording.The labelS indicates a syncopation in the melody. (b) Percussion scalogram frdim af @ piano
interpretation of a Bach melody (using frequencies at&n@ Hz). To view a video of the percussion scalogram being traced out
along with the piano sound, go to the URL in (2) and select the videBdoh piano piece (scalogram).

cal than for the jazz piece. This hierarchy of notes, the rhythm of theagas is easily discernable from this
percussion scalogram, while it is not clearly evident from the scoreafdgést to untrained musicians).

Example 6: A Jazz Orchestral Passage

For our final example, we analyze the spectrogram and percussiogista shown in Figure 12. They were
obtained from a passage from a recording of the jazz orchestraic;lsslem Air Shaftpy Duke Ellington.
This passage is quite interesting in that it is comprised of only alibnbtes, yet we shall see that it contains a
wealth of complexity. (We saw this in the African drum passage as well; penia have an aspect of aesthetic
theory here.) We now describe some of the elements comprising the rhythmedadly within this passage. It
should be noted that, although there is a scoréifmtem Air Shaftthat score is a complex orchestration which
requires a large amount of musical expertise to interpret. Our speamf@gecussion scalogram approach
provides a more easily studied description of the melody and rhythm, incluéingl\wdepictions of length
and intensity of notes from several instruments playing simultaneolbst importantly, the spectrogram
provides an objective description of recorded performances. It eawmsled to compare different performances
in an objective way. Our percussion scalograms facilitate the same kindegftode comparison of the rhythm
in performances.

1. Reflection of Notes. The passage contains a sequence of high pitched notes played by aostiderie
(wielded by the legendary “Tricky Sam” Nanton). This sequence dividiEstwo groups of three,
enclosed in the rectangles label®dandR'T in the spectrogram shown at the top of Figure 12. The
three notes withif' are located at frequencies of approximatehp, 855, and845 Hz. They are
then reflected about the frequergs0, indicated by the line segmentt between the two rectangles, to
produce the three notes withRIT at frequencies of approximatedys, 845, and855 Hz. The operation
of reflection’® about a specific pitch is a common, group-theoretical, operation employéassiaal
music [20].

2. Micro-Tones. The pitch interval described by going down in frequency fi®i¥h to 845 Hz is

log,(855,/845) = 0.017 ~ 1/48,
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1000

S S

FIGURE 12 Top: Spectrogram of a passage from a recordingl@aflem Air Shaft. Bottom: Percussion scalogram of the same
passage (using all frequencies). The boxed regions and labels@eéned in the text. To view videos of this spectrogram and
scalogram, go to the URL in (2) and select the links indicateti&stem Air Shaft.

which is aboutl /4 of the (logarithmic) half-tone change df 12 of an octave (on th&2-tone chromatic
scale). Thus withiril' the pitch descends by arighth-tone.Similarly, in RT the pitch ascends at the
end by an eighth-tone. These an&ro-toneintervals, intervals that are not representable on the standard
12-tone scoring used in Western classical music. They are, in fact, halftdr@ahof the quarter-tones
that are a characteristic of jazz music (based on its roots in African toakdsspi]). Here Ellington
synthesizes a melodic characteristic of jazz (micro-tones) with one sicdmusic (reflection about a
pitch level).

3. Staggered Syncopation.Viewing the video of the percussion scalogram shown in Figure 12, we note
that there is a staggering of rests between notes, and we also obsgnepation. This syncopation
occurs when the slide trombone slides into and between the emphasized nbestinuctured’ and
RT. The pattern lying above the segments marged the figure is

one—TWO —three —FOUR — (rest) - FIVE

an unusualstaggered syncopationf rhythm. [One thing we observe when viewing the video is that the
percussion scalogram does capture the timings of most of the note atiéusgh it does not perfectly
reflect some muted horn notes—because the attacks of those notes@nedtis/ the higher volume
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trombone notes. Nevertheless, the scalogram provides an adequatptaesof the driving rhythm of
the trombone notes, and the muted trumpet notes at the end of the passage.]

4. Hierarchies of Melody. Within the passage there are several different types of melody, overettit
length time-scales. First, we note that there is the hierarchly ahd’ R T at one level along with their
combination into one long passage, linked melodically by a sequence of muteddiesH. Notice
that the pitch levels i exhibit, over a shorter time-scale, the pitch pattern shown in the notes within
T together withR'T. That is a type of hierarchical organization of melodic contour. Therdusther
hierarchical level (in terms of a longer time-scale) exhibited by the meloditooownf the bass notes
(shown as a long sinusoidal arc within the region markedby Here the bassist, Jimmy Blanton, is
using the bass as a plucked melodic instrument as well as providing a resgafao for the other players.
This is one of his major innovations for the bass violin in jazz instrumentation.

We can see from this analysis that this passage withinGjgstconds reveals a wealth of structure, including
many features that are unique to jazz. Such mastery illustrates why Duket@tlings one of the greatest
composers of theot™ century.

Justification of the percussion scalogram method

Choosing the width and frequency parameters

In this section we discuss how the parameters are chosen to provide acsatistlisplay of a scalogram for
a pulse train, which is the second step of the percussion scalogram métietermsatisfactorymeans that
both the average number of pulses/sec (beats/sec) are displayed amtivideal beats are resolved.

To state our result we need to define several parameters. The niimbkistand for the time duration of
the signal, whileB will denote the total number of pulses in the pulse train signal. We will use thiéveos
parametep to scale the widtlv and frequency defined by

pT B

=—— = . 11
5B VT T (11)

w
Notice thatw andv are in a reciprocal relationship; this is in line with the reciprocal relation berviiene-
scale and frequency that is used in wavelet analysis. Notice also thabdnéty B/7 in v is equal to the
average number of pulses/sec. The best choice for the pargmiatdrese formulas will be described below.
Two further parameters are the number of octavesd voicesM used in the percussion scalogram. We shall
see that these two parameters will depend on the valde thie minimum length of &-interval (minimum
space between two successive pulses).

Now that we have defined our parameters, we can state our main result;

Given the constraints of using positive integers for the octdvaasd voices)M and using256 total
correlations, satisfactory choices for the parameters of a percussangam are:

T B
_— = — :4
B’ v pT’ b \/E

22
2T 3 256
I= {1°g2<532> - zJ , M= LJ

The remainder of this section provides the rationale for this result [notit&dhaalue ofv in (12) is twice the
value given in (11); we shall explain why below]. While this rationale mayb®oa completely rigorous proof,
it does provide useful insights into how a Gabor CWT works with pulse traind it does provide us with

w =

(12)
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the method used to produce the scalograms for the pulse trains shown irctiba Ezamples of rhythmic
analysis (and for the other examples given at ®ietures of Musiavebsite [6]). In fact, we have found that in
every case, the method provides a satisfactory display of the scalograrpdilse train from a musical passage
(whether the pulse train is accurate is a separate question, we are stilhgvorkextending its capabilities as
described previously).

We shall denote a given pulse train P (¢,,)}. [Here we use{t,, = 7.,,} as the time-values; this
notational change is clarified by looking at equation (16).] This signalfeeti8(¢,,,) = 1 during the duration
of a beat andP(t,,,) = 0 when there is no beat. We use the Gabor wavelet in (7) to analyze the mriaé s
Since we are using the complex Gabor wavelet, we have both a real and amyaggant:

Un(t) = w2 (W) cog 27;Vt (13)
Ug(t) = w2 (/%) gin QZyt . (14)

These real and imaginary parts have the same envelope function:
Up(t) = w ze T/ (15)

The width parametew controls how quickly¥ g is dampened. For smaller values wfthe function
dampens more quickly. Alsey; controls the magnitude of the wavelet functiontat 0. In fact, we have
¥ (0) = w2, The width parameter also affects the frequency of oscillations of theletavesw is increased,
the frequency of oscillations of the wavelet is decreased. See Figure 13

NN

@w=0.5 b)w=1 CQuw=2

FIGURE 13 Real parts of Gabor wavelet with frequency parameter 1 and width parameter = 0.5, 1, and2. For each graph,
the horizontal range is-5, 5] and the vertical range is-2, 2].

The frequency parameteris used to control the frequency of the wavelet within the envelope function
This parameter has no effect on the envelope function, as shown iti@&u(Eb). Asv is increased, the Gabor
wavelet oscillates much more quickly. See Figure 14.

A M

@v=20.5 byr=1 Cv=2

FIGURE 14 Real parts of Gabor wavelet with width parameter 1 and frequency parameter= 0.5, 1, and2. For each graph,
the horizontal range is-5, 5] and the vertical range [s-2, 2].
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When using the Gabor wavelet to analyze music, correlations are compiectinie Gabor wavelet with
a scaling parameter. For our pulse trairP these correlations are denotgd : ¥,) for s = 2-7/M  r =
0,1,...,IM, and are defined by

M
(P2 W) () = Y Pltm)s /2 ([t — 7] 57 ). (16)

m=0

Since{P(t,,)} is a binary signal, the terms of this sum will equal/2¥ ([t,,, — 7]s~1) if P(t,n) = 1, and0

if P(t,n) = 0. The values of, represent the center of the Gabor wavelet being translated along the isne ax
So for values ot,,, closer tory, s=1/2V ([t,, — 7%]s~1) will be larger in magnitude. Then, at values fgy
whereP(t,,) = 1 andt,, = 7%, the corresponding term in the correlation sum will be

1 2B
P(tm)S_I/Q\I/ ([tm - Tk]s_l) = 3_1/2\11(0) = % ﬁ
which will represent the striking of an instrument. Sosaseaches its smallest values, near= 27/, the
correlations will have large magnitude values only negrand whereP(t,,) = 1, i.e. at the beat of the
instrument. This happens because small valuese$ult in the function

sV ([t — 7i]s71)

being dampened very quickly, so very little else other than the actual beadstacted by the Gabor CWT.

Detection of the rhythm and grouping of the percussion signal is accoragdlisithe larger values cf
that result in a slowly dampened Gabor wavelet. As the correlation sum nwvalsies such that, # 7, the
functions—1/2W ([t,,, — 7x]s~1) is being dampened. But with the wavelet being dampened more slowly now,
the values of~1/2W ([t,,, — 7.]s~!) are larger neat,,, = 7, than they were before. Hence thgvalues where
P(tm) = 1 will result in summing more values of the wavelet that are significantly largeréfre, any beat
that is close to another beat will result in larger correlation values foefargiues ofs. Notice also that those
values oft,,, whereP(t,,) = 0 that are close t¢,, values wheréP(¢,,,) = 1 will result in summing across the
lesser dampened Gabor wavelet values—our scalogram will thus beeragjghe grouping of closely spaced
beats.

Now we need to choose the parameterandr based on{P(¢,,)} to obtain the desired shape for the
Gabor wavelet. To choose these parameters for a specific percugsialvee will useB /T as our measure of
the average beats per second. The average time between beats will therrdx@procal of the average beats
per second?’/B. Then we let the width parameterand the frequency parametebe defined by (11). with
parametep > 0 used as a scaling factor. With these width and frequency parametersaltoe Wavelet is

W(t) = % o~ m(2Bt/pT)? idw B2/ (p2T?) (17)
p

We want to detect beats that are withii B, the average time between beats, of each other. Likewise,
we want separation of the beats that are not withjtB of each other. We accomplish this by inspecting the
envelope function evaluated at= 7'/ B,

T o QB 7471'/[)2
Vg (B) = pTe . (18)

The value of the enveloping functiohg (7'/ B) can be written as a function of the parametecall it M (p):

Mip) =27 e (19)
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Remembering thal’ and B are constants determined by the percussion sound signal, the maximization of
the magnitude of the wavelet at= 7'/B becomes a simple one variable optimization problem. The first
derivative of M (p) is

167 — p?

- op3edm/v*\ /pT /2B

Hencep = 4,/7 maximizes the value of the envelope function of the wavelet-at7"/ B, thus allowing us to
detect beats withifi’/ B of each other.

With the wavelet function dampened sufficiently slowly, we know that thelepedunction is sufficiently
wide. But the correlations are computed by taking the magnitude of the sune abthplex Gabor wavelet
samples. Since the real and imaginary parts involve products with sine®sing<s, there are intervals where
the functions are negative. It is these adjacent negative regionacbrsile of the main lobe dfy, that allow
for the separation of beats that are greater tham apart but less thad7'/B apart (if they are more than
2T/ B apart, the dampening & i produces low-magnitude correlations).

M'(p)

Width and Frequency for better display

There is one wrinkle to the analysis above. If the width and frequen@npeters are set according to Equa-
tion (11), then at the lowest reciprocal-scale valye = 1 the display of the percussion scalogram cuts off at
the bottom, and it is difficult to perceive the scalogram’s features at this.Stmremedy that defect, when we
display a percussion scalogram we double the width in order to push dewovikst reciprocal-scale by one
octave. Hence we use the following formulas

pT B
w="=

37 V:ﬁa p:4\/7? (20)

for displaying our percussion scalograms.

Choosing Octaves and Voices

The variablel /s along the vertical axis of a percussion scalogram [see Figure 4(l®xample] is related
to frequency, but on a logarithmic scalo find the actual frequency at any point along the vertical axis we
compute the base frequeneyw multiplied by the value of /s. The value ofl determines the range of the
vertical axis in a scalogram, i.e. how largigs is, and the value o/ determines how many correlations per
octave we are computing for our scalogram.

In order to have a satisfactory percussion scalogram, we need the maxianegtet frequency equal to
the maximum pulse frequency. The scale variatdatisfiess = 2~%/M wherek = 0,1,...,IM. Hence the
maximum1/s we can use is calculated as follows:

1 oI M/M _ ol
S

Now letd be the minimum distances between pulses on a pulse train. By analogy oflseitiains with
sinusoidal curves, we postulate that the maximum pulse frequency shewdebhalf ofl /4. Setting this
maximum pulse frequency equal to the maximum wavelet frequency, we have

1 v

Notice that both sides of (21) have units of beats/sec.
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Using the equations far andw in (20), we rewrite Equation (21) as

i Yool
- w
LAY
pT
Solving forI yields
22
_ PN
I =log, (532) 1. (22)
Becausd is required to be a positive integer, we shall round down this exact vaiue Thus we set
22
p°T 3

To illustrate the value of selectinfgper Equation (23), in Figure 15 we show three different scalograms
for the Dance Aroundpercussion sequence. For this example, Equation (23) yields the atuéd. Using
this value, we find that the scalogram plotted in Figure 15(b) is able to detettdividual drum strikes and
their groupings. If, however, we séttoo low, say/ = 3 in Figure 15(a), then the scalogram does not display
the timings of the individual drum beats very well. On the other hand, i set too high, say = 5 in
Figure 15(c), then the scalogram is too finely resolved. In particuléeabp of the scalogram, fay/'s = 2°,
we find that the scalogram is detecting the beginning and ending of eathsthike asseparate eventsyhich
overestimates by a factor 8fthe number of strikes.

o 1038 2076 315 4153 [} 1038 2.076 313 4152 0 1038 2076 315 4153

L 20 k 20 -

@I=3 (b)I =4 ©I=5
FIGURE 15 Examples of percussion scalograms using different valuéstbie number of octaves, for tlizance Arouncpercus-
sion passage. Graph (b) uses the valué of 4 calculated from Equation (23).

Having set the value df, the value forM can then be expressed as a simple inverse proportion, depending
on the program’s capacity. For example, withwayv [35] the number of correlations used in a scalogram is
constrained to be no more tha6, in which case we set

M = {gJ (24)

and that concludes our rationale for satisfactorily choosing the parasretgrercussion scalograms.
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Conclusion

In this paper we have described the way in which spectrograms andspiEnciscalograms can be used for
analyzing musical rhythm and melody. While percussion scalograms widgketiectively on brief percussion
passages, more research is needed to improve their performance ogr aavidty of music (especially when
the volume is highly variable). We only briefly introduced the use of specmg for analyzing melody and its
hierarchical structure, more examples are discussed in [34] and aetrster[6]. Our discussion showed how
percussion scalograms could be used to distinguish some styles of drumuimgudh more work remains
to be done. Further research is also needed on using local avenagjead of the global averagé that
we employed, and on determining what additional information can be gleamedtifie phases of the Gabor
CWTs.
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