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2 Time-frequency Analysis of Musical Rhythm

Introduction

We shall use the mathematical techniques of Gabor transforms and continuous wavelet transforms to analyze
the rhythmic structure of music and its interaction with melodic structure. This analysis reveals the hierarchical
structure of rhythm. Hierarchical structure is common to rhythmic performances throughout the world’s music.
The work described here is interdisciplinary and experimental. We use mathematics to aid in the understanding
of the structure of music, and have developed mathematical tools which (while not completely finished) have
shown themselves to be useful for this musical analysis. We aim to explore ideas with this paper, to provoke
thought, not to present completely finished work.

The paper is organized as follows. We first summarize the mathematical method of Gabor transforms
(also known as short-time Fourier transforms, or spectrograms). Spectrograms provide a tool for visualizing
the patterns of time-frequency structures within a musical passage. We thenreview the method of percussion
scalograms, a new technique for analyzing rhythm introduced in [34]. After that, we show how percussion
scalograms are used to analyze percussion passages and rhythm. We carry out four analyses of percussion
passages from a variety of music styles (rock drumming, African drumming, and jazz drumming). We also
explore three examples of the connection between rhythm and melody (a jazzpiano piece, a Bach piano
transcription, and a jazz orchestration). These examples provide empirical justification of our method. Finally,
we explain how the parameters for percussion scalograms are chosen in order to provide a satisfactory display
of the pulse trains that characterize a percussion passage (a key component of our method). A brief concluding
section provides some ideas for future research.

Gabor transforms and music

We briefly review the widely employed method of Gabor transforms [17], alsoknown as short-time Fourier
transforms, or spectrograms, or sonograms. The first comprehensive effort in employing spectrograms in mu-
sical analysis was Robert Cogan’s masterpiece,New Images of Musical Sound[9] — a book that still deserves
close study. In [12, 13], D̈orfler describes the fundamental mathematical aspects of using Gabor transforms
for musical analysis. Two other sources for applications of short-time Fourier transforms are [31, 25]. There
is also considerable mathematical background in [15, 16, 19], with musical applications in [14]. Using sono-
grams or spectrograms for analyzing the music of bird song is described in [21, 30, 26]. The theory of Gabor
transforms is discussed in complete detail in [15, 16, 19], with focus on its discrete aspects in [1, 34]. However,
to fix our notations for subsequent work, we briefly describe this theory.

The sound signals that we analyze are all digital, hence discrete, so we assume that a sound signal has the
form {f(tk)}, for uniformly spaced valuestk = k∆t in a finite interval[0, T ]. A Gabor transform off , with
window functionw, is defined as follows. First, multiply{f(tk)} by a sequence of shifted window functions
{w(tk − τℓ)}Mℓ=0, producing time localized subsignals,{f(tk)w(tk − τℓ)}Mℓ=0. Uniformly spaced time values,
{τℓ = tjℓ}Mℓ=0 are used for the shifts (j being a positive integer greater than1). The windows{w(tk − τℓ)}Mℓ=0

are all compactly supported and overlap each other. See Figure 1. The value ofM is determined by the
minimum number of windows needed to cover[0, T ], as illustrated in Figure 1(b).

Second, becausew is compactly supported, we treat each subsignal{f(tk)w(tk− τℓ)} as a finite sequence
and apply an FFTF to it. (A good, brief explanation of how FFTs are used for frequency analysis can be
found in [1].) This yields the Gabor transform of{f(tk)}:

{F{f(tk)w(tk − τℓ)}}Mℓ=0. (1)

Note that because the valuestk belong to the finite interval[0, T ], we always extend our signal values beyond
the interval’s endpoints by appending zeroes, hence the full supports of all windows are included.



Time-frequency Analysis of Musical Rhythm 3

(a) (b) (c)

FIGURE 1 (a) Signal. (b) Succession of shifted window functions. (c) Signal multiplied by middle window in (b); an FFT can now
be applied to this windowed signal.

The Gabor transform that we employ uses aBlackman windowdefined by

w(t) =

{

0.42 + 0.5 cos(2πt/λ) + 0.08 cos(4πt/λ) for |t| ≤ λ/2

0 for |t| > λ/2

for a positive parameterλ equalling the width of the window where the FFT is performed. The Fourier trans-
form of the Blackman window is very nearly positive (negative values lessthan10−4 in size), thus providing
an effective substitute for a Gaussian function (which is well-known to have minimum time-frequency sup-
port). See Figure 2. Further evidence of the advantages of Blackman-windowing is provided in [3, Table II].
In Figure 2(b) we illustrate that for each windowing byw(tk − τm) we finely partition the frequency axis into
thin rectangular bands lying above the support of the window. This provides a thin rectangular partition of
the (slightly smeared) spectrum off over the support ofw(tk − τm) for eachm. The efficacy of these Gabor
transforms is shown by how well they produce time-frequency portraits that accord well with our auditory
perception, which is described in the vast literature on Gabor transforms that we briefly summarized above.

It is interesting to listen to the sound created by the three Gabor atoms in Figure 2(b). You can watch a
video of the spectrogram being traced out while the sound is played by going to the following web page:

http://www.uwec.edu/walkerjs/TFAMRVideos/ (2)

and selecting the video forGabor Atoms. The sound of the atoms is of three successive pure tones, on an
ascending scale. The sound occurs precisely when the cursor crosses the thin dark bands in the spectrogram,
and our aural perception of a constant pitch matches perfectly with the constant darkness of the thin bands.
These Gabor atoms are, in fact, good examples ofindividual notes.Much better examples of notes, in fact, than
the infinitely extending (both in past and future) sines and cosines used in classical Fourier analysis. Because
they are good examples of pure tone notes, these Gabor atoms are excellent building blocks for music.

We shall provide some new examples that further illustrate the effectiveness of these Gabor transforms.
For all of our examples, we used1024 point FFTs, based on windows of support. 1/8 sec with a shift of
∆τ ≈ 0.008 sec. These time-values are usually short enough to capture the essentialfeatures of musical
frequency change.

In Figure 3 we show three basic examples of spectrograms of music. Part (a) of the figure shows a spec-
trogram of a clip from a rock drum solo. Notice that the spectrogram consists of dark vertical swatches, these
swatches correspond to the striking of the drum, which can be verified by watching a video of the spectrogram
[go to the website in (2) and select the videoRock Drum Solo]. As the cursor traces over the spectrogram in
the video, you will hear the sound of the drum strikes during the times when thecursor is crossing a vertical
swatch. The reason why the spectrogram consists of these vertical swatches will be explained in the next
section.

Part (b) of Figure 3 shows a spectrogram of a recording of four notes played on a piano scale. Here the
spectrogram shows two features. Its main feature is a set of four sections consisting of groups of horizontal
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FIGURE 2 (a) Blackman window,λ = 1. Notice that it closely resembles the classic Gabor window—a bell curve described by a
Gaussian exponential—but it has the advantage of compact support. (b) Time-frequency representation—the units along the horizontal
are in seconds, along the vertical are in Hz—of three Blackman windows multiplied by the real part of the kernelei2πnk/N of the
FFT used in a Gabor transform, for three different frequency values n. Each horizontal bar accounts for99.99% of the energy of the
cosine-modulated Blackman window (Gabor atom) graphed below it.

line segments placed vertically above each other. These vertical series ofshort horizontal segments are the
fundamentals and overtones of the piano notes. There are also thin vertical swatches located at the beginning of
each note. They are the percussive attacks of the notes (the piano is, in fact, classed as a percussive instrument).

Part (c) of Figure 3 shows a spectrogram of a clip from a piano versionof a famous Bach melody. This
spectrogram is much more complex, rhythmically and melodically than the first two passages. Its melodic
complexity consists in itspolyphonicnature: the vertical series of horizontal segments are due to three-note
chordsbeing played on the treble scale and also individual notes played as counterpoint on the bass scale.1

[This contrasts with the single notes in themonophonicpassage in (b).] We will analyze the rhythm of this
Bach melody in Example 5 below.

(a) Drum Clip (b) Piano scale notes (c) Bach melody

FIGURE 3 Three spectrograms. (a) Spectrogram of a drum solo from a rock song. (b) Notes along a piano scale. (c) Spectrogram
of a piano solo from a Bach melody.

1The chord structure and counterpoint can be determined either by careful listening or by examining the score [2].
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Scalograms, percussion scalograms, and rhythm

In this section we briefly review the method of scalograms (continuous wavelet transforms) and then discuss
the method of percussion scalograms.

Scalograms

The theory of continuous wavelet transforms is well-established [10, 8, 27]. A CWT differs from a spectrogram
in that it does not use translations of a window of fixed width, instead it usestranslations of differently sized
dilations of a window. These dilations induce a logarithmic division of the frequency axis. The discrete
calculation of a CWT that we use is described in [1, Section 4]. We shall onlybriefly review the definition of
the CWT in order to fix our notation. We then use it to analyze percussion.

Given a functionΨ, called thewavelet, the continuous wavelet transformWΨ[f ] of a sound signalf is
defined as

WΨ[f ](τ, s) =
1√
s

∫ ∞

−∞
f(t)Ψ(

t− τ

s
) dt (3)

for scales > 0 andtime-translationτ . For the functionΨ in the integrand of (3), the variables produces a
dilation and the variableτ produces a translation.

We omit various technicalities concerning the types of functionsΨ that are suitable as wavelets; see [8, 10,
27]. In [8, 11], Equation (3) is derived from a simple analogy with the logarithmically structured response of
our ear’s basilar membrane to a sound stimulusf .

We now discretize Equation (3). First, we assume that the sound signalf(t) is non-zero only over the time
interval[0, T ]. Hence (3) becomes

WΨ[f ](τ, s) =
1√
s

∫ T

0
f(t)Ψ(

t− τ

s
) dt.

We then make a Riemann sum approximation to this last integral usingtm = m∆t, with uniform spacing
∆t = T/N ; and discretize the time variableτ , usingτk = k∆t. This yields

WΨ[f ](τk, s) ≈
T

N

1√
s

N−1
∑

m=0

f(tm)Ψ ([tm − τk]s−1). (4)

The sum in (4) is a correlation of two discrete sequences. Given twoN -point discrete sequences{fk} and
{Ψk}, theircorrelation{(f : Ψ)k} is defined by

(f : Ψ)k =

N−1
∑

m=0

fmΨm−k . (5)

[Note: For the sum in (5) to make sense, the sequence{Ψk} is periodically extended,via Ψ−k := ΨN−k.]
Thus, Equations (4) and (5) show that the CWT, at each scales, is approximated by a multiple of a discrete

correlation of{fk = f(tk)} and{Ψs
k = s−1/2Ψ(tks

−1)}. These discrete correlations are computed over a
range of discrete values ofs, typically

s = 2−r/J , r = 0, 1, 2, . . . , I · J (6)

where the positive integerI is called the number ofoctavesand the positive integerJ is called the number of
voicesper octave. For example, the choice of6 octaves and12 voices corresponds—based on the relationship
between scales and frequencies described below—to the equal-temperedscale used for pianos.
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The CWTs that we use are based on Gabor wavelets. AGabor wavelet,with width parameterω and
frequency parameterν, is defined as follows:

Ψ(t) = ω−1/2e−π(t/ω)2ei2πνt/ω. (7)

Notice that the complex exponentialei2πνt/ω has frequencyν/ω. We callν/ω the base frequency.It corre-
sponds to the largest scales = 1. The bell-shaped factorω−1/2e−π(t/ω)2 in (7) damps down the oscillations
of Ψ, so that their amplitude is significant only within a finite region centered att = 0. See Figures 13 and
14. Since the scale parameters is used in a reciprocal fashion in Equation (3), it follows that the reciprocal
scale1/s will control the frequency of oscillations of the functions−1/2Ψ(t/s) used in Equation (3). Thus,
frequency is described in terms of the parameter1/s, which Equation (6) shows is logarithmically scaled. This
point is carefully discussed in [1] and [34, Chap. 6], where Gabor scalograms are shown to provide a method
of zooming in on selected regions of a spectrogram.

Pulse trains and percussion scalograms

The method of using Gabor scalograms for analyzing percussion sequences was introduced by Smith in [32],
and described empirically in considerable detail in [33]. The method described by Smith involved pulse trains
generated from the sound signal itself. Our method is based on the spectrogram of the signal, which reduces
the number of samples and hence speeds up the computation, making it fast enough for real-time applications.
(An alternative method based on an FFT of the whole signal, thephase vocoder,is described in [31].)

Our discussion will focus on a particular percussion sequence. This sequence is a passage from the song,
Dance Around.Go to the URL in (2) and select the video,Dance Around percussion,to hear this passage.
Listening to this passage you will hear several groups of drum beats, along with some shifts in tempo. This
passage illustrates the basic principles underlying our approach.

In Figure 4(a) we show the spectrogram of theDance Aroundclip. This spectrogram is composed of a
sequence of thick vertical segments, which we will callvertical swatches.Each vertical swatch corresponds
to a percussive strike on a drum. These sharp strikes on drum heads excite a continuum of frequencies rather
than a discrete tonal sequence of fundamentals and overtones. Because the rapid onset and decay of these
sharp strikes produce approximate delta function pulses—and a delta function pulse has an FFT that consists
of a constant value for all frequencies—it follows that these strike sounds produce vertical swatches in the
time-frequency plane.

Our percussion scalogram method has the following two parts:

I. Pulse train generation.We generate a “pulse train,” a sequence of subintervals of1-values and0-values
[see the graph at the bottom of Figure 4(a)]. The rectangular-shapedpulses in this pulse train correspond
to sharp onset and decay of transient bursts in the percussion signal graphed just above the pulse train.
The widths of these pulses are approximately equal to the widths of the vertical swatches shown in the
spectrogram. Most importantly, the location and duration of the intervals of1-values corresponds to
our hearing of the drum strikes, while the location and duration of the intervals of 0-values corresponds
to the silences between the strikes. In Step 1 of the method below we describe how this pulse train is
generated.

II. Gabor CWT.We use a Gabor CWT to analyze the pulse train. This CWT calculation is performed in
Step 2 of the method. The rationale for performing a CWT is that the pulse train isa step function analog
of a sinusoidal of varying frequency. Because of this analogy between tempo of the pulses and frequency
in sinusoidal curves, we employ a Gabor CWT for analysis. As an example,see the scalogram plotted
in Figure 4(b). The thick vertical line segments at the top half of the scalogram correspond to the drum
strikes, and these segments flow downward and connect together. Within the middle of the time-interval
for the scalogram, these drum strike groups join together over four levelsof hierarchy (see Figure 5).
Listening to this passage, you can perceive each level of this hierarchy.
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FIGURE 4 Calculating a percussion scalogram for theDance Aroundsound clip. (a) Spectrogram of sound waveform with its pulse
train graphed below it. (b) Percussion scalogram and the pulse train graphed above it. The dark region labeled byG corresponds to a
collection of drum strikes that we hear as a group, and within that group are other subgroups over shorter time scales that are indicated
by the splitting of groupG into smaller dark blobs as one goes upwards in the percussion scalogram(those subgroups are also aurally
perceptible). See Figure 5 for a better view ofG.

Now that we have outlined the basis for the percussion scalogram method, we can list it in detail. The percus-
sion scalogram method for analyzing percussive rhythm consists of the following two steps.

Percussion Scalogram Method

Step 1. Let {g(τm, yk)} be the spectrogram image, like in Figure 4(b). Calculate the averageḡ over all
frequencies at each time-valueτm:

ḡ(τm) =
1

P

P−1
∑

k=0

g(τm, yk), (whereP is the total number of frequenciesyk), (8)

and denote the average ofḡ by A:

A =
1

M + 1

M
∑

m=0

ḡ(τm). (9)

Then the pulse train{P(τm)} is defined by

P(τm) = 1{τk : ḡ(τk)>A}(τm). (10)

where1 is the indicator function.2 The values{P(τm)} describe a pulse train whose intervals of1-values
mark off the position and duration of the vertical swatches (hence of the drum strikes). See Figure 6.

Step 2. Compute a Gabor CWT of the pulse train signal{P(τm)} from Step 1.This Gabor CWT provides
an objective picture of the varying rhythms within a percussion performance.

2The indicator function1S for a setS is defined by1S(t) = 1 whent ∈ S and1S(t) = 0 whent /∈ S.
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Level 2
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FIGURE 5 A rhythm hierarchy, obtained from the region corresponding toG in Figure 4. The hierarchy has two parts, labeledα
andβ. In each part the top level, Level 1, comprises the individual strikes. These strikes merge at Level 2 into regions corresponding to
double strikes, and which are aurally perceptible as groupings of doublestrikes. Notice that the Level 2 regions forβ lie at positions of
slightly increasing then decreasing strike-frequency as time proceeds;this is aurally perceptible when listening to the passage. There
is also a Level 3 region forα which merges with the Level 2 regions forβ to comprise the largest groupG.

Remarks (a) For the time intervals corresponding to vertical swatches, equations (8) and (9) produce values
of ḡ that lie above the averageA (becauseA is pulled down by the intervals of silence). See Figure 6(a). For
some signals, where the volume level is not relatively constant (louder passages interspersed with quieter
passages) the total averageA will be too high (the quieter passages will not contribute to the pulse train). We
should instead be computing local averages over several (but not all) time-values. We leave this as a goal
for subsequent research. In a large number of cases, such as those discussed in this article, we have found
that the method described above is adequate.(b) For theDance Aroundpassage, the entire frequency range
was used, as it consists entirely of vertical swatches corresponding to the percussive strikes. When analyzing
other percussive passages, we may have to isolate a particular frequency range that contains just the vertical
swatches of the drum strikes. We illustrate this later in the musical examples we describe (see the next section,
Examples of rhythmic analysis). (c) We leave it as an exercise for the reader to show that the calculation of
ḡ(τm) can actually be done in the time-domain using the data from the windowed signal values. (Hint: Use
Parseval’s theorem.) We chose to use the spectrogram values because of their ease of interpretation—especially
when processing needs to be done, such as using only a particular frequency range. The spectrogram provides
a lot of information to aid in the processing.(d) Some readers may wonder why we have computed a Gabor
CWT in Step 2. Why not compute, say, a Haar CWT (which is based on a step function as wavelet)? We
have found that a Haar CWT does provide essentially the same information asthe magnitudesof the Gabor
CWT (which is all we use in this article; using the phases of the complex-valuedGabor CWT is left for future
research). However, the Haar CWT is more difficult to interpret, as shown in Figure 7.

We have already discussed the percussion scalogram in Figure 4(b). We shall continue this discussion,
and provide several more examples of our method in the next section. In each case, we find that a percussion
scalogram allows us to finely analyze the rhythmic structure of percussion sequences.
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FIGURE 6 Creation of a pulse train. On the left we show the graph ofḡ from equation (8) for the spectrogram of theDance Around
sound clip [see Figure 4(a)], which we have normalized to have an average ofA = 1. The horizontal line is the graph of the constant
function1. The pulse train, shown on the right, is then created by assigning the value1 when the graph of̄g is larger thanA, and0
otherwise.

Examples of rhythmic analysis

As discussed in the previous section, a percussion scalogram allows us toperceive a hierarchal organization of
the strikes in a percussion sequence. Hierarchical structures within music, especially within rhythmic passages
and melodic contours, is a well-known phenomenon. For example, in an entertaining and thought-provoking
book [24] with an excellent bibliography,This Is Your Brain On Music,Daniel Levitin says in regards to
musical production (p. 154):

Our memory for music involves hierarchical encoding—not all words are equally salient, and not
all parts of a musical piece hold equal status. We have certain entry points and exit points that
correspond to specific phrases in the music. . . Experiments with musicians have confirmed this
notion of hierarchical encoding in other ways. Most musicians cannot start playing a piece of
music they know at any arbitrary location; musicians learn music according to ahierarchical
phrase structure. Groups of notes form units of practice, these smaller units are combined into
larger units, and ultimately into phrases; phrases are combined into structures such as verses and
choruses of movements, and ultimately everything is strung together as a musical piece.

In a similar vein, related to musical theory, Steven Pinker summarizes the famoushierarchical theory of Jack-
endoff and Lerdahl [23, 22] in his fascinating book,How The Mind Works[28, pp. 532–533]:

Jackendoff and Lerdahl show how melodies are formed by sequencesof pitches that are
organized in three different ways, all at the same time. . . The first representation is a grouping
structure. The listener feels that groups of notes hang together in motifs, which in turn are
grouped into lines or sections, which are grouped into stanzas, movements,and pieces. This
hierarchical tree is similar to a phrase structure of a sentence, and when the music has lyrics the
two partly line up...The second representation is a metrical structure, the repeating sequence of
strong and weak beats that we count off as “ONE-two-THREE-four.”The overall pattern is
summed up in musical notation as the time signature. . . The third representation is areductional
structure. It dissects the melody into essential parts and ornaments. The ornaments are stripped
off and the essential parts further dissected into even more essential parts and ornaments on
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them. . . we sense it when we recognize variations of a piece in classical music or jazz. The
skeleton of the melody is conserved while the ornaments differ from variationto variation.

(a) (b)

FIGURE 7 (a) Magnitudes of Gabor CWT of a pulse sequence. (b) Haar CWT of thesame pulse sequence.

In regard to the strong and weak beats referred to by Pinker, we observe that these are reflected by the
relative thickness and darkness of the vertical segments in a percussionscalogram. For example, when listening
to theDance aroundpassage, the darker groups of strikes in the percussion scalograms seem to correlate with
loudness of the striking. This seems counterintuitive, since the pulse train consists only of0’s and1’s, which
would not seem to reflect varying loudness. This phenomenon can be explained as follows. When a pulse is
very long, that requires a more energetic striking of the drum, and this more energetic playing translates into a
louder sound. The longer pulses correspond to darker spots lower down on the scalogram, and we hear these
as louder sounds. (The other way that darker spots appear lower down is in grouping of several strikes. We do
not hear them necessarily as louder individual sounds, but taken together they account for more energy than
single, narrow pulses individually.)

With these descriptions of the hierarchical structure of music in mind, we now turn to representations of
them within four different percussion sequences.

Example 1: Rock drumming

In Figure 8 we show a percussion scalogram for a clip from a rock drumsolo, which we have partially analyzed
in the previous section. Here we complete our analysis by describing the hierarchy shown in the scalogram in
a more formal, mathematical way, and then introducing the notion ofproduction rulesfor the performance of
the percussion sequence.

We can see that there are five separate groupings of drum strikes in the scalogram in Figure 8:

A
(1-level)

B
(2-levels)

C
(4-levels)

B′

(2-levels)

C ′

(4-levels)

The separate hierarchies within these groupings can be symbolized in the following way. We use the
notation∗| to symbolize a “whole note,” a longer duration, more emphasized strike. And the notation∗| to
symbolize a “half note,” a shorter duration, less emphasized strike. This allows us to symbolize the different
emphases in the rhythm. Furthermore, the underscore symbolwill be used to denote a rest between strikes
(notes). For example,∗| ∗| symbolizes a half note followed by a rest followed by a whole note. Using this
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notation, the strikes in Figure 8 are symbolized by

∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗|∗|

This notation is essentially equivalent to the standard notation for drumming used in musical scores (for ex-
amples of this notation, see [29] and [5]). We have thus shown that percussion scalograms can be used to read
off a musical score for the drumming from its recorded sound. This is important because percussion playing
is often extemporaneous, hence there is a need for notating particularly important extemporaneous passages as
an aid to their repetition by other performers.

There is, however, much more information in a percussion scalogram. We can also use parentheses to mark
off the groupings of the notes into their hierarchies, as follows:

∗| (∗| ∗| ∗|) ((∗|(∗|∗| ))(∗|∗| )(∗|∗|)(∗|∗|)) (∗| ∗|) ((∗|(∗| ∗|)(∗|∗| ))(∗|∗|))

The advantage of this notation over the previous one is that the hierarchical groupings of notes is indicated.
We believe this enhanced notation, along with the videos that we create of sound with percussion scalograms
provide an important tool for analyzing the performance of percussion sequences. For example, they may be
useful in teaching performance technique (recall Levitin’s discussion ofhow musicians learn to play musi-
cal passages) by adding two adjuncts, notation plus video, to aid the ear in perceiving subtle differences in
performance technique.

A B C B′ C′

FIGURE 8 Percussion scalogram for rock drumming. The labels are explained in Example 1. To view a video of the percussion
scalogram being traced out along with the drumming sound, go to the URL in (2) and select the video forDance Around percussion.

In addition to this symbolic notation for percussion passages, there is an even deeper (and somewhat con-
troversial) notion ofproduction rulesfor the generation of these percussion sequences (analogous to Chom-
sky’s notion of “deep structure” in linguistics that generates, via production rules, the syntactical hierarchy of
sentences: [22, Section 11.4] and [7, Sections 5.2, 5.3]). Examples of these rules in music are described in [22,
pp. 283–285, and p. 280]. Rather than giving a complete mathematical description at this time, we will simply
give a couple of examples. For instance, the groupingB′ in the passage is produced from the groupingB, by
clipping two strikes off the end:

B′ ← End(B)

As another example, if we look at the starting notes in the groupsC andC ′ defined by

Start(C) := ∗|(∗|∗| ) and Start(C ′) := ∗|(∗| ∗|)
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thenStart(C ′) is produced fromStart(C) by a modulation of emphases:

Start(C ′)← Modulation(Start(C))

In this paper we are only giving these two examples of production rules, in order to give a flavor of the idea. A
more complete discussion is a topic for a future paper.

Example 2: African drumming

Our second example is a passage of African drumming, clipped from the beginning of the songWelelafrom
an album by Miriam Makeba. In this case, the spectrogram of the passage, shown in Figure 9(a), has some
horizontal banding at lower frequencies that adversely affect the percussion scalogram by raising the mean
value of the spectrogram averages. Consequently, we used only values from the spectrogram that are above
1000 Hz to compute the percussion scalogram shown in Figure 9(b). By listening tothe video referenced in
the caption of Figure 9, you should find that this percussion scalogram does accurately capture the timing and
grouping of the drum strikes in the passage.

This passage is quite interesting in that it is comprised of only20 drum strikes, yet we shall see that it
contains a wealth of complexity. First, we can see that there are seven separate groupings of drum strikes in
the scalogram in Figure 9:

A
(1-level)

B
(3-level)

C
(3-level)

A
(1-level)

B
(3-level)

C
(3-level)

D
(2-level)

Notice the interweaving of different numbers of levels within this sequence of groups. Second, the drum strikes
can be notated with hierarchical grouping as follows:

∗| ((∗|∗|) (∗| ∗| )) ((∗|∗|)(∗| )(∗|)) ∗| ((∗|∗|) (∗| ∗| )) ((∗|∗|)(∗| )(∗|)) (∗|∗|)

This passage is interesting not only in terms of the complex hierarchical grouping of notes, but also because of
the arrangement of the time intervals between notes. It is a well-known fact among musicians that the silences
between notes are at least as important as the notes themselves. In this passage we have the following sequence
of time-intervals between notes (1 representing a short rest, 2 representing a long rest, and 0 representing no
rest):

2 0 1 1 1 0 0 0 2 2 0 1 1 1 0 0 0 1 0

which quantitatively describes the “staggered” sound of the drum passage. [The reader might find it interesting
to compute the sequence of rests for Example 1, and verify that it is less staggered, with longer sequences of
either1’s or 0’s.]

Example 3: Jazz drumming

In this example we consider a couple of cases of jazz drumming. In Figure 10(a) we show a percussion
scalogram created from the drum solo at the beginning of the jazz classic,Sing Sing Sing.The tempo of this
drumming is very fast. Our notation for this sequence was obtained from examining the percussion scalogram
both as a picture and as the video sequence (referred to in the caption of the figure) is played. Here is the
notated sequence:

Very fast

∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗|
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(a)

0

1000

(b)

A B C A B C D

BCDBC

FIGURE 9 (a) Spectrogram for African drumming. Between0 and 1000 Hz, as marked on the right side of (a), there are a
considerable number of horizontal line segments. Those segments adversely affect the percussion scalogram. Consequently only
frequencies above1000 Hz are used to create the percussion scalogram. (b) Percussion scalogram for African drumming, using
frequencies above1000 Hz. The labels are explained in Example 2. To view a video of the percussion scalogram being traced out
along with the drumming sound, go to the URL in (2) and select the video forWelela percussion.

Our notation differs considerably from the notation given for this beginning drum solo in the original score [29],
the first several notes being:

Jungle Drum Swing

∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗| ∗|

Setting aside its’ racist overtones, we observe that this tempo instruction is not terribly precise. We can see
from comparing these two scores, that the drummer (Gene Krupa) is improvising the percussion (as is typical
with jazz). Our percussion scalogram method allows us to derive a precisenotation for Krupa’s improvisation.
We leave it as an exercise for the reader to notate the hierarchical structure of this drum passage, based on the
percussion scalogram. From our notation above, we find that the pattern of rests in Krupa’s playing has this
structure:

2 0 1 1 1 0 1 2 2 1 1 2 1 2 1 1 0 0 0 1 2 0 1

Here, as with the African drumming, we see a staggered pattern of rests.
Our second example of jazz drumming is a clip of the beginning percussive passage from another jazz

classic,Unsquare Dance.In the score for the piece [5], the following pattern of strikes (indicated ashand
clapping)

∗| ∗| ∗| ∗|

is repeated in each measure (consistent with the7/4 time signature). Listening to the passage as the video is
played, we can hear this repeated series of “strikes” as groups of very fast individual strikings of drumsticks.
The drummer (Joe Morello) is improvising on the notated score by replacing individual hand claps by these
very rapid strikings of his drumsticks. It is noteworthy that, in many instances, the percussion scalogram is
sensitive enough to record the timings of the individual drumstick strikings. The scalogram is thus able to
reveal, in a visual representation, the double aspect to the rhythm: individual drum strikings within the larger
groupings notated as hand claps in the original score.

These examples are meant to illustrate that the percussion scalogram method can provide useful musical
analyses of drumming rhythms. Several more examples are given at thePictures of Musicwebsite [6]. We now
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(a) (b)

FIGURE 10 (a) Percussion scalogram for drum solo inSing Sing Singusing frequencies above1000 Hz. (b) Percussion scalogram
for complex drum stick percussion inUnsquare Danceusing frequencies above2000 Hz. To view videos of these percussion scalo-
grams being traced out along with the drumming sound, go to the URL in (2) and select the videos forSing Sing Sing percussionor
Unsquare Dance percussion.

provide some examples of using both spectrograms and percussion scalograms to analyze both the melodic and
rhythmic aspects of music. Because they are based on an assumption of intense pulsing in the musical signal
due to percussion, which is only satisfied for some tonal instruments, percussion scalograms do not always
provide accurate results for tonal instruments. However, when they do provide accurate results (a precise
description of the timings of the notes), they reveal the rhythmic structure of the music (which is our goal). We
now provide three examples of successful analyses of melody and rhythm.

Example 4: A Jazz Piano Melody

In Figure 11(a) we show a percussion scalogram of a recording of a jazz piano improvisation by Erroll Garner.
It was captured from a live recording [18]. Since this is an improvisation,there is no musical score for the
passage. Several aspects of the scalogram are clearly evident. First,we can see a staggered spacing of rests as in
the African drumming in Example 2 and the jazz drumming in theSing Sing Singpassage in Example 3. There
is also a syncopation in the melody, indicated by the interval markedS in Figure 11(a). By syncopation we
mean an altered rhythm, “ONE-two-three-FOUR,” rather than the more common“ONE-two-THREE-four.”
The percussion scalogram provides us with a visual representation of these effects, which is an aid to our
listening comprehension. Although the percussion scalogram does not perform perfectly here (for example
the last note in the sequence markedS is split in two at the top (the scalogram has detected the attack and the
decay of the note), when viewed as a video the percussion scalogram does enable us to quickly identify the
timing and hierarchical grouping of the notes (which would be much more difficult using only our ears).

Example 5: A Bach Piano Transcription

As a simple contrast to the previous example, we briefly discuss the percussion scalogram shown in Fig-
ure 11(b), obtained from a piano interpretation of a Bach melody,Jesu, Joy of Man’s Desiring.The sound
recording used was created from a MIDI sequence. In contrast to theprevious jazz piece, this classical piece
shows no staggering of rests, and no syncopation. The hierarchy of groupings of notes is also more symmetri-
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S

(a) (b)

FIGURE 11 (a) Percussion scalogram of a clip from an Erroll Garner jazz piano passage (using frequencies above1800 Hz). To
view a video of the percussion scalogram being traced out along with the piano playing, go to the URL in (2) and select the video for
Erroll Garner piano recording.The labelS indicates a syncopation in the melody. (b) Percussion scalogram from a clip of a piano
interpretation of a Bach melody (using frequencies above3000 Hz). To view a video of the percussion scalogram being traced out
along with the piano sound, go to the URL in (2) and select the video forBach piano piece (scalogram).

cal than for the jazz piece. This hierarchy of notes, the rhythm of the passage, is easily discernable from this
percussion scalogram, while it is not clearly evident from the score [2] (at least to untrained musicians).

Example 6: A Jazz Orchestral Passage

For our final example, we analyze the spectrogram and percussion scalogram shown in Figure 12. They were
obtained from a passage from a recording of the jazz orchestral classic, Harlem Air Shaft,by Duke Ellington.
This passage is quite interesting in that it is comprised of only about15 notes, yet we shall see that it contains a
wealth of complexity. (We saw this in the African drum passage as well; perhaps we have an aspect of aesthetic
theory here.) We now describe some of the elements comprising the rhythm andmelody within this passage. It
should be noted that, although there is a score forHarlem Air Shaft,that score is a complex orchestration which
requires a large amount of musical expertise to interpret. Our spectrogram/percussion scalogram approach
provides a more easily studied description of the melody and rhythm, including visual depictions of length
and intensity of notes from several instruments playing simultaneously.Most importantly, the spectrogram
provides an objective description of recorded performances. It can be used to compare different performances
in an objective way. Our percussion scalograms facilitate the same kind of objective comparison of the rhythm
in performances.

1. Reflection of Notes.The passage contains a sequence of high pitched notes played by a slide trombone
(wielded by the legendary “Tricky Sam” Nanton). This sequence dividesinto two groups of three,
enclosed in the rectangles labeledT andRT in the spectrogram shown at the top of Figure 12. The
three notes withinT are located at frequencies of approximately855, 855, and845 Hz. They are
then reflected about the frequency850, indicated by the line segmentM between the two rectangles, to
produce the three notes withinRT at frequencies of approximately845, 845, and855 Hz. The operation
of reflectionR about a specific pitch is a common, group-theoretical, operation employed in classical
music [20].

2. Micro-Tones. The pitch interval described by going down in frequency from855 to 845 Hz is

log2(855/845) = 0.017 ≈ 1/48,
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T RT

M

H

0

500 Hz

850

1000

B

S S

FIGURE 12 Top: Spectrogram of a passage from a recording ofHarlem Air Shaft.Bottom: Percussion scalogram of the same
passage (using all frequencies). The boxed regions and labels are explained in the text. To view videos of this spectrogram and
scalogram, go to the URL in (2) and select the links indicated byHarlem Air Shaft.

which is about1/4 of the (logarithmic) half-tone change of1/12 of an octave (on the12-tone chromatic
scale). Thus withinT the pitch descends by aneighth-tone.Similarly, inRT the pitch ascends at the
end by an eighth-tone. These aremicro-toneintervals, intervals that are not representable on the standard
12-tone scoring used in Western classical music. They are, in fact, half the interval of the quarter-tones
that are a characteristic of jazz music (based on its roots in African tonal scales [4]). Here Ellington
synthesizes a melodic characteristic of jazz (micro-tones) with one of classical music (reflection about a
pitch level).

3. Staggered Syncopation.Viewing the video of the percussion scalogram shown in Figure 12, we note
that there is a staggering of rests between notes, and we also observe a syncopation. This syncopation
occurs when the slide trombone slides into and between the emphasized notes inthe structuresT and
RT. The pattern lying above the segments markedS in the figure is

one – TWO – three – FOUR – (rest) – FIVE

an unusual,staggered syncopation,of rhythm. [One thing we observe when viewing the video is that the
percussion scalogram does capture the timings of most of the note attacks, although it does not perfectly
reflect some muted horn notes—because the attacks of those notes are obscured by the higher volume
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trombone notes. Nevertheless, the scalogram provides an adequate description of the driving rhythm of
the trombone notes, and the muted trumpet notes at the end of the passage.]

4. Hierarchies of Melody. Within the passage there are several different types of melody, over different
length time-scales. First, we note that there is the hierarchy ofT andRT at one level along with their
combination into one long passage, linked melodically by a sequence of muted horn notesH. Notice
that the pitch levels inH exhibit, over a shorter time-scale, the pitch pattern shown in the notes within
T together withRT. That is a type of hierarchical organization of melodic contour. There is afurther
hierarchical level (in terms of a longer time-scale) exhibited by the melodic contour of the bass notes
(shown as a long sinusoidal arc within the region marked byB). Here the bassist, Jimmy Blanton, is
using the bass as a plucked melodic instrument as well as providing a regulartempo for the other players.
This is one of his major innovations for the bass violin in jazz instrumentation.

We can see from this analysis that this passage within just6 seconds reveals a wealth of structure, including
many features that are unique to jazz. Such mastery illustrates why Duke Ellington was one of the greatest
composers of the20th century.

Justification of the percussion scalogram method

Choosing the width and frequency parameters

In this section we discuss how the parameters are chosen to provide a satisfactory display of a scalogram for
a pulse train, which is the second step of the percussion scalogram method.The termsatisfactorymeans that
both the average number of pulses/sec (beats/sec) are displayed and theindividual beats are resolved.

To state our result we need to define several parameters. The numberT will stand for the time duration of
the signal, whileB will denote the total number of pulses in the pulse train signal. We will use the positive
parameterp to scale the widthω and frequencyν defined by

ω =
pT

2B
, ν =

B

pT
. (11)

Notice thatω andν are in a reciprocal relationship; this is in line with the reciprocal relation between time-
scale and frequency that is used in wavelet analysis. Notice also that the quantity B/T in ν is equal to the
average number of pulses/sec. The best choice for the parameterp in these formulas will be described below.
Two further parameters are the number of octavesI and voicesM used in the percussion scalogram. We shall
see that these two parameters will depend on the value ofδ, the minimum length of a0-interval (minimum
space between two successive pulses).

Now that we have defined our parameters, we can state our main result:

Given the constraints of using positive integers for the octavesI and voicesM and using256 total
correlations, satisfactory choices for the parameters of a percussion scalogram are:

ω =
pT

B
, ν =

B

pT
, p = 4

√
π

I =

⌊

log2

(

p2T 2

δB2

)

− 3

2

⌋

, M =

⌊

256

I

⌋

.

(12)

The remainder of this section provides the rationale for this result [notice that the value ofω in (12) is twice the
value given in (11); we shall explain why below]. While this rationale may notbe a completely rigorous proof,
it does provide useful insights into how a Gabor CWT works with pulse trains, and it does provide us with
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the method used to produce the scalograms for the pulse trains shown in the section Examples of rhythmic
analysis (and for the other examples given at thePictures of Musicwebsite [6]). In fact, we have found that in
every case, the method provides a satisfactory display of the scalogram for a pulse train from a musical passage
(whether the pulse train is accurate is a separate question, we are still working on extending its capabilities as
described previously).

We shall denote a given pulse train by{P(tm)}. [Here we use{tm = τm} as the time-values; this
notational change is clarified by looking at equation (16).] This signal satisfiesP(tm) = 1 during the duration
of a beat andP(tm) = 0 when there is no beat. We use the Gabor wavelet in (7) to analyze the pulse signal.
Since we are using the complex Gabor wavelet, we have both a real and imaginary part:

Ψℜ(t) = ω− 1

2 e−π(t/ω)2 cos
2πνt

ω
(13)

Ψℑ(t) = ω− 1

2 e−π(t/ω)2 sin
2πνt

ω
. (14)

These real and imaginary parts have the same envelope function:

ΨE(t) = ω− 1

2 e−π(t/ω)2 . (15)

The width parameterω controls how quicklyΨE is dampened. For smaller values ofω the function
dampens more quickly. Also,ω controls the magnitude of the wavelet function att = 0. In fact, we have
Ψ(0) = ω−1/2. The width parameter also affects the frequency of oscillations of the wavelet. Asω is increased,
the frequency of oscillations of the wavelet is decreased. See Figure 13.

(a)ω = 0.5 (b) ω = 1 (c) ω = 2

FIGURE 13 Real parts of Gabor wavelet with frequency parameterν = 1 and width parameterω = 0.5, 1, and2. For each graph,
the horizontal range is[−5, 5] and the vertical range is[−2, 2].

The frequency parameterν is used to control the frequency of the wavelet within the envelope function.
This parameter has no effect on the envelope function, as shown in Equation (15). Asν is increased, the Gabor
wavelet oscillates much more quickly. See Figure 14.

(a)ν = 0.5 (b) ν = 1 (c) ν = 2

FIGURE 14 Real parts of Gabor wavelet with width parameterω = 1 and frequency parameterν = 0.5, 1, and2. For each graph,
the horizontal range is[−5, 5] and the vertical range is[−2, 2].
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When using the Gabor wavelet to analyze music, correlations are computed using the Gabor wavelet with
a scaling parameters. For our pulse trainP these correlations are denoted(P : Ψs) for s = 2−r/M , r =
0, 1, ..., IM , and are defined by

(P : Ψs)(τk) =
M
∑

m=0

P(tm)s−1/2Ψ ([tm − τk]s−1). (16)

Since{P(tm)} is a binary signal, the terms of this sum will equals−1/2Ψ ([tm − τk]s−1) if P(tm) = 1, and0
if P(tm) = 0. The values ofτk represent the center of the Gabor wavelet being translated along the time axis.
So for values oftm closer toτk, s−1/2Ψ ([tm − τk]s−1) will be larger in magnitude. Then, at values fortm
whereP(tm) = 1 andtm = τk, the corresponding term in the correlation sum will be

P(tm)s−1/2Ψ ([tm − τk]s−1) = s−1/2Ψ(0) =
1√
s

√

2B

pT

which will represent the striking of an instrument. So ass reaches its smallest values, nears = 2−I , the
correlations will have large magnitude values only nearτk, and whereP(tm) = 1, i.e. at the beat of the
instrument. This happens because small values ofs result in the function

s−1/2Ψ ([tm − τk]s−1)

being dampened very quickly, so very little else other than the actual beats are detected by the Gabor CWT.
Detection of the rhythm and grouping of the percussion signal is accomplished by the larger values ofs

that result in a slowly dampened Gabor wavelet. As the correlation sum movesto values such thattm 6= τk, the
functions−1/2Ψ ([tm − τk]s−1) is being dampened. But with the wavelet being dampened more slowly now,
the values ofs−1/2Ψ ([tm − τk]s−1) are larger neartm = τk than they were before. Hence thetm values where
P(tm) = 1 will result in summing more values of the wavelet that are significantly large. Therefore, any beat
that is close to another beat will result in larger correlation values for larger values ofs. Notice also that those
values oftm whereP(tm) = 0 that are close totm values whereP(tm) = 1 will result in summing across the
lesser dampened Gabor wavelet values—our scalogram will thus be registering the grouping of closely spaced
beats.

Now we need to choose the parametersω andν based on{P(tm)} to obtain the desired shape for the
Gabor wavelet. To choose these parameters for a specific percussion signal we will useB/T as our measure of
the average beats per second. The average time between beats will then bethe reciprocal of the average beats
per second:T/B. Then we let the width parameterω and the frequency parameterν be defined by (11). with
parameterp > 0 used as a scaling factor. With these width and frequency parameters, the Gabor wavelet is

Ψ(t) =

√

2B

pT
e−π(2Bt/pT )2ei4πB2/(p2T 2). (17)

We want to detect beats that are withinT/B, the average time between beats, of each other. Likewise,
we want separation of the beats that are not withinT/B of each other. We accomplish this by inspecting the
envelope function evaluated atx = T/B,

ΨE

(

T

B

)

=

√

2B

pT
e−4π/p2

. (18)

The value of the enveloping functionΨE(T/B) can be written as a function of the parameterp, call it M(p):

M(p) =

√

2B

pT
e−4π/p2

. (19)
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Remembering thatT andB are constants determined by the percussion sound signal, the maximization of
the magnitude of the wavelet atx = T/B becomes a simple one variable optimization problem. The first
derivative ofM(p) is

M ′(p) =
16π − p2

2p3e4π/p2
√

pT/2B
.

Hencep = 4
√

π maximizes the value of the envelope function of the wavelet atx = T/B, thus allowing us to
detect beats withinT/B of each other.

With the wavelet function dampened sufficiently slowly, we know that the envelope function is sufficiently
wide. But the correlations are computed by taking the magnitude of the sum of the complex Gabor wavelet
samples. Since the real and imaginary parts involve products with sines and cosines, there are intervals where
the functions are negative. It is these adjacent negative regions, on each side of the main lobe ofΨℜ, that allow
for the separation of beats that are greater thanT/B apart but less than2T/B apart (if they are more than
2T/B apart, the dampening ofΨE produces low-magnitude correlations).

Width and Frequency for better display

There is one wrinkle to the analysis above. If the width and frequency parameters are set according to Equa-
tion (11), then at the lowest reciprocal-scale value1/s = 1 the display of the percussion scalogram cuts off at
the bottom, and it is difficult to perceive the scalogram’s features at this scale. To remedy that defect, when we
display a percussion scalogram we double the width in order to push down the lowest reciprocal-scale by one
octave. Hence we use the following formulas

ω =
pT

B
, ν =

B

pT
, p = 4

√
π (20)

for displaying our percussion scalograms.

Choosing Octaves and Voices

The variable1/s along the vertical axis of a percussion scalogram [see Figure 4(b) forexample] is related
to frequency, but on a logarithmic scale.To find the actual frequency at any point along the vertical axis we
compute the base frequencyν/ω multiplied by the value of1/s. The value ofI determines the range of the
vertical axis in a scalogram, i.e. how large1/s is, and the value ofM determines how many correlations per
octave we are computing for our scalogram.

In order to have a satisfactory percussion scalogram, we need the maximumwavelet frequency equal to
the maximum pulse frequency. The scale variables satisfiess = 2−k/M , wherek = 0, 1, . . . , IM . Hence the
maximum1/s we can use is calculated as follows:

1

s
= 2IM/M = 2I .

Now let δ be the minimum distances between pulses on a pulse train. By analogy of our pulse trains with
sinusoidal curves, we postulate that the maximum pulse frequency should be one-half of1/δ. Setting this
maximum pulse frequency equal to the maximum wavelet frequency, we have

1

2δ
=

ν

ω
2I . (21)

Notice that both sides of (21) have units of beats/sec.
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Using the equations forν andω in (20), we rewrite Equation (21) as

1

2δ
=

ν

ω
2I

=

(

B

pT

)2

2I .

Solving forI yields

I = log2

(

p2T 2

δB2

)

− 1. (22)

BecauseI is required to be a positive integer, we shall round down this exact value for I. Thus we set

I =

⌊

log2

(

p2T 2

δB2

)

− 3

2

⌋

. (23)

To illustrate the value of selectingI per Equation (23), in Figure 15 we show three different scalograms
for the Dance Aroundpercussion sequence. For this example, Equation (23) yields the valueI = 4. Using
this value, we find that the scalogram plotted in Figure 15(b) is able to detect the individual drum strikes and
their groupings. If, however, we setI too low, sayI = 3 in Figure 15(a), then the scalogram does not display
the timings of the individual drum beats very well. On the other hand, ifI is set too high, sayI = 5 in
Figure 15(c), then the scalogram is too finely resolved. In particular, atthe top of the scalogram, for1/s = 25,
we find that the scalogram is detecting the beginning and ending of each drum strike asseparate events,which
overestimates by a factor of2 the number of strikes.

(a) I = 3 (b) I = 4 (c) I = 5

FIGURE 15 Examples of percussion scalograms using different values ofI, the number of octaves, for theDance Aroundpercus-
sion passage. Graph (b) uses the value ofI = 4 calculated from Equation (23).

Having set the value ofI, the value forM can then be expressed as a simple inverse proportion, depending
on the program’s capacity. For example, with FAWAV [35] the number of correlations used in a scalogram is
constrained to be no more than256, in which case we set

M =

⌊

256

I

⌋

(24)

and that concludes our rationale for satisfactorily choosing the parameters for percussion scalograms.
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Conclusion

In this paper we have described the way in which spectrograms and percussion scalograms can be used for
analyzing musical rhythm and melody. While percussion scalograms work fairly effectively on brief percussion
passages, more research is needed to improve their performance on a wider variety of music (especially when
the volume is highly variable). We only briefly introduced the use of spectrograms for analyzing melody and its
hierarchical structure, more examples are discussed in [34] and at the website [6]. Our discussion showed how
percussion scalograms could be used to distinguish some styles of drumming, but much more work remains
to be done. Further research is also needed on using local averages,instead of the global averageA that
we employed, and on determining what additional information can be gleaned from the phases of the Gabor
CWTs.
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