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Abstract We analyze some musical passages using hanning windowed spectro-
grams. Preliminary results indicate that the highest peaks in the spec-
tra for these musical passages do not obey a 1/f power law, contrary to
results reported by some other workers. Further study is needed to de-
termine the exponents for the spectra for a variety of musical passages
from around the world.

Introduction

Initial work on analyzing musical signals was begun in [1], [3], [5], and
[6]. The mathematical model for a musical signal Y (t) proposed in [1]
is the finite sum

Y (t) =
∑

j

Vjh

(
t − τj

σj

)
cos λj(t − τj) (1)

where h(·) is a taper function of duration σj . Formula (1) has constants
Vj (amplitude), τj (offset in time), and λj (frequency).

The Fourier transform Ŷ (λ) of Y (t) is then
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where ĥ[σj(λ−λj)] is a narrow function with peak centered on frequency
λj . When

V 2
j σ2

j ∝
1

λj
, all j (3)

we say that the signal Y has a 1/f spectrum.
In [1], statistical data are gathered to establish the claim that musical

signals have 1/f spectra. In this paper we shall analyze several musical
passages using hanning spectrograms to obtain time-frequency portraits
of those signals. Our preliminary results cast doubt on the validity of (3)
for these musical passages. Our musical signals include examples from
non-Western music (whereas [1] examined only Western styles of music).
The sound recordings we used are all available for downloading at the
following website:

http://www.uwec.edu/walkerjs/TimeFrSpMusic (4)

1. Hanning spectrograms

The basic tool we used to obtain time-frequency spectra for a mu-
sical signal is hanning spectrograms. For such spectrograms, a Hann
windowing function ω(·) is defined as follows:1

ω(t) =

{
0.5 + 0.5 cos(πt), for |t| ≤ 1.0

0, for |t| > 1.0
(5)

A hanning spectrogram is then obtained by the following three-step pro-
cess.2 Step 1: Discretely sample the signal Y (t) at the time values {tk},
with fixed spacing ∆t = tk − tk−1, to obtain the (digital) signal {Y (tk)}.
Step 2: Multiply the signal {Y (tk)} by M sliding windows

{
ω

(
tk − t̃j
256∆t

)}
, (6)

with t̃j − t̃j−1 = 256∆t. Step 3: Apply a 512-point FFT to each one of
these windowed signals (centered on t̃j):

{
Y (tk)ω

(
tk − t̃j
256∆t

)}
, (7)

1For more details on Hann windows, see [4] or [7].
2This process is discussed in more detail in [8].
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Chopin Bosavi rainforest

Gyuto monks Fern

Figure 1. Dynamic power spectra for four musical passages.

Figure 2. Complete dynamic power spectra for the Fern musical passage.
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obtaining the hanning spectrogram,

{Ŷj(λm)}. (8)

With band-limited signals, if the time-values {tk} are close enough to
each other, Steps 1 to 3 are invertible. With discretely sampled data
{Y (tk)} to begin with (as in a .wav audio file), Steps 2 and 3 are re-
versible, i.e. the map

{Y (tk)} 7→ {Ŷj(λm)} (9)

is invertible.3 When displaying these spectrograms, one typically takes
the moduli-squared of all values, {|Ŷj(λm)|2}, which are called dynamic

power spectra. In plotting these dynamic power spectra, one displays val-
ues on a logarithmic intensity scale with larger values plotted as darker
pixels. See Fig. 1 for dynamic power spectra for four musical passages
[the ones available for downloading at website (4)]. In Fig. 1, the Chopin
signal is a recording of a Chopin piano passage; the Bosavi rainforest
signal is a recording of some members of a South American indigenous
tribe singing; the Gyuto monks signal is a recording of Buddhist monks
singing; and the Fern signal is a computer generated fractal-music signal.
See Fig. 2 for a longer dynamic spectra for this last passage.

In Fig. 3 we graph the FFT magnitudes |Ŷ (λm)| for each of these
four test signals. By inspection it is easily seen that, for each signal as
a whole, the FFT magnitude is not proportional to 1/λ0.5, hence the

power spectrum |Ŷ (λm)|2 is not 1/f .
In Fig. 4(a) we show the dynamic spectra for the Chopin passage. In

Figures 4(b) to (d) we show the magnitudes {|Ŷj(λm)|} for the times
t̃j = 1.0, 1.5, and 2.0, respectively. The least-square curves for the log-

log values of the 5 highest peaks from the FFT magnitudes {|Ŷj(λm)|}
are also plotted in Figures 4(b) to (d). The exponents at t̃j = 1.0, 1.5,
and 2.0 are 2.6, 1.4, and 3.6, respectively. These exponents are not close
to 0.5 as they would be if there were a 1/f power law in effect. In Table 1

we show the estimated exponents for {|Ŷj(λm)|} at times t̃j = 0.5, 1.0,
1.5, 2.0, and 2.5. These exponents are widely at variance from the 1/f -
exponent of 0.5. This casts doubt on the proposed 1/f power law for
spectra of musical signals.

3See [8] for more details on the inversion of (9). The map in (9) is a Gabor transform. See
[2] for a thorough treatment of Gabor transforms and their inverses.
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Chopin Bosavi Rainforest

Fern Gyuto

Figure 3. Global transform amplitudes.

Table 1. Estimated Exponents γ for |Ŷj | ∝ 1/fγ .

Time (sec) Chopin Fern Bosavi Gyuto

0.5 1.8 0.0 2.8 1.6

1.0 2.6 1.8 3.5 0.5

1.5 1.4 2.1 0.4 0.6

2.0 3.6 0.2 13.9 2.6

2.5 2.4 0.5 3.4 0.6



6

Dynamic Spectra t ≈ 1.0 sec, 1/f2.6

t ≈ 1.5 sec, 1/f1.4 t ≈ 2.0 sec, 1/f3.6

Figure 4. Analysis of Chopin passage.
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2. Synthesized sounds

In the previous section we attempted to calculate exponents for a
power law 1/fγ and found that values for γ are widely dispersed for
four test signals. In this section we take a different tack. Suppose that a
commonly recognized musical passage, such as the Chopin piano passage
considered above, is subjected to a transformation which surely distorts
it away from a 1/f power law (assuming it has one to begin with). Given

that the spectrogram has the form {|Ŷj(λm)|eiθ(λm)} we subject it to two
transformations: {

|Ŷj(λm)|2eiθ(λm)
}

(10)

and {√
|Ŷj(λm)|eiθ(λm)

}
(11)

We then apply the spectrogram inversion procedure to each of the data in
(10) and (11). This produces two sampled signals, denoted {Y2(tk)} and
{Y√

2(tk)}, respectively. The signal {Y2(tk)} was saved as PowerTwo.wav,
and the signal {Y√

2(tk)} was saved as Sqrt.wav, at the website listed
in (4). The reader is invited to listen to these two .wav files. If they
sound like music (maybe not great music, but still music), then this casts
further doubt on the 1/f hypothesis: Assuming that the Chopin passage
Chopin.wav is 1/f , then neither PowerTwo.wav nor Sqrt.wav are 1/f
signals.

Conclusion

We have reported some preliminary results on determining exponents
γ, for a spectral power law 1/f γ , for various musical passages. Further
study is in order, such as increasing the number of peak values used
in the spectrogram analysis, and obtaining further data on subjective
impressions of synthesized sounds. Preliminary results cast some doubt
on the 1/f power law proposed by other workers.
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