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Note: Computer exercises, designed for FAWAV , are indicated by a superscriptc. For example, problem 2.1.5 below
is a computer exercise. A subscripts means that a solution is provided. For instance, there is a solution provided for
problem 2.1.1(a). Solutions begin on page 47.

Chapter 2

Section 2.1

Example 2.1.1 For the signalf = (2, 2, 2, 4, 4, 4), find its first level Haar transform.

Solution.The average of the first pair of values is2, the average of the second pair of values is3, and the average of the
third pair of values is4. Multiplying these averages by

√
2, we obtaina1 = (2

√
2, 3

√
2, 4

√
2). To computed1, we find

thatd1 = (f1 − f2)/
√

2 = 0, andd2 = (f3 − f4)/
√

2 = −2/
√

2 = −
√

2, andd3 = (f5 − f6)/
√

2 = 0. Thus the first
level Haar transform off is (2

√
2, 3

√
2, 4

√
2 | 0,−

√
2, 0).

Example 2.1.2 For the signalf = (2, 2, 2, 4, 4, 8), compute an approximate signalf̃ by inverse transforming the
compressedHaar transform(a1 | 0, . . . , 0) obtained by setting all the fluctuation values equal to zero.Find the largest
error between each value off andf̃ .

Solution. We find thata1 = (2
√

2, 3
√

2, 6
√

2). Therefore, the inverse Haar transform producesf̃ = (2, 2, 3, 3, 6, 6).
The largest error between each value off andf̃ is 2.

Example 2.1.3 [Figure 2.1] To create Figure 2.1 you do the following. First, chooseNew 1-dimfrom FAWAV ’s
menu, and then chooseGraph/Plot.Plot the formula1

20 xˆ2 (1-x)ˆ4 cos(12 pi x)

over the interval of type[0, L] with L = 1. That produces the graph plotted in Figure 2.1(a) (after selectingView/Display
style and choosingBlank for the Grid style andLines for the Plot style). To produce Figure 2.1(b), selectTrans-
forms/Waveletand chooseHaar as the Wavelet type with1 entered for the Levels value. After plotting the transform,
change toLinesas the plot style to get the graph shown in the figure.

2.1.1 Compute the first trend and first fluctuation for the followingsignals:

(a)s f = (2, 4, 6, 6, 4, 2)

(b) f = (−1, 1, 2,−2, 4,−4, 2, 2)

(c)s f = (1, 2, 3, 3, 2, 2, 1, 1)

(d) f = (2, 2, 4, 4, 6, 6, 8, 8)

2.1.2 Given the following Haar transformed signals, find the original signalsf that correspond to them.

(a)s (2
√

2,−
√

2, 3
√

2,−
√

2 | 0,
√

2, 0,
√

2)

(b) (4
√

2, 3
√

2,−
√

2, 2
√

2 |
√

2,−
√

2, 0, 2
√

2)

(c)s (3
√

2, 2
√

2, 2
√

2, 0 | 2
√

2,−
√

2,
√

2, 0)

(d) (4
√

2, 5
√

2, 7
√

2,−4
√

2 |
√

2, 2
√

2,−2
√

2,
√

2)

1This formula is saved in the archiveBookFormulas.zip which can be downloaded from theExamples&Exerciseslink at the book’s website.
You extract the formulas from this archive and save them in a directory that you can then call up with theLoad button under the text box in the
graphing procedure.
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2.1.3 For each of the signalsf given below, compute an approximate signalf̃ by inverse transforming thecompressed
Haar transform(a1 | 0, . . . , 0) obtained by setting all the fluctuation values equal to zero.In each case, find the largest
error between each value off andf̃ .

(a)s f = (2, 2, 3, 3, 4, 5, 6, 6)

(b) f = (1, 2, 3, 3, 2, 1)

(c)s f = (2,−2,−2,−2,−2, 0, 2, 2)

(d) f = (4, 4, 4,−1,−1, 1, 2, 2, 4, 6)

2.1.4 Consider again problem 2.1.3 above. When will there be a difference between a value off and a value of the
approximate signal̃f , and when will the two signals’ values be the same?

2.1.5c Plot 1-level Haar transforms of the following functions—sampled uniformly over[0, 1) using 1024 points.

(a) f(x) = x2(1 − x)

(b)s f(x) = x4(1 − x)6 cos(64πx)

(c) (0.2 < x < 0.3) − 3(0.4 < x < 0.5) + 2(0.5 < x < 0.8)

(d) f(x) = sgn(sin 12πx)

Section 2.2

Example 2.2.1 For the signalf = (2, 2, 4, 6, 8, 10), find the energies of its trend and fluctuation subsignals andshow
that their sum equals the energy off .

Solution. The trend isa1 = (2
√

2, 5
√

2, 9
√

2) and the fluctuation isd1 = (0,−
√

2,−
√

2). The trend energyEa1 is
8 + 50 + 162 = 220, and the fluctuation energy isEd1 = 0 + 2 + 2 = 4. Their sum is224 and the energy off is
4 + 4 + 16 + 36 + 64 + 100 = 224 so they are equal.

Example 2.2.2 Compute the percentage of compaction of the energy off = (2, 2, 4, 6, 8, 10) by the1-level Haar
transform, in terms ofEa1/Ef .

Solution.In Example 2.2.1, we found thatEa1 = 220 and thatEf = 224. Therefore,Ea1/Ef = 220/224 = 0.982 . . .

Example 2.2.3 [Figure 2.2] To graph Figure 2.2(a), you plot (after selectingEdit/Points usedand selecting4096 as
the number of points):

50xˆ2(1-x)ˆ6cos(12pi x)(0<x<1)+80(1-x)ˆ2(2-x)ˆ8sin(2 0pi x)(1<x<2)

usingLinesas the Plot style. Figure 2.2(b) is plotted by performing a Haar wavelet transform with2 for the number
of Levels (after changing the Grid style toBlank and theY -interval values to−1.5, 1.5). Figure 2.2(c) is generated
by right-clicking on the graph for the function [Figure 2.2(a)] and selectingEnergy graph; the resulting graph is then
clipped out by right-clicking and selectingClip and entering2 for the graph to be clipped. Similarly, Figure 2.2(d) is
created by performing the same steps for the Haar transform graph.

Example 2.2.4 For the signalf = (2, 2, 4, 6, 8, 8, 12, 10), find its1-level,2-level, and3-level Haar transforms.

Solution. The pairwise, successive averages forf are2, 5, 8, 11. Hencea1 = (2
√

2, 5
√

2, 8
√

2, 11
√

2). In a similar
way, we find thatd1 = (0,−

√
2, 0,

√
2). Thus, the1-level Haar transform off is

(a1 |d1) = (2
√

2, 5
√

2, 8
√

2, 11
√

2 | 0,−
√

2, 0,
√

2).
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By applying the1-level Haar transform toa1, we obtain

a1 H17−→ (a2 |d2) = (7, 19 | − 3,−3).

Hence the2-level Haar transform off is

f
H27−→ (7, 19 | − 3,−3 | 0,−

√
2, 0,

√
2).

Applying the1-level Haar transform toa2 we obtain(7, 19)
H17−→ (13

√
2 | − 6

√
2). Thus, the3-level transform is

f
H37−→ (13

√
2 | − 6

√
2 | − 3,−3 | 0,−

√
2, 0,

√
2).

2.2.1s Find the energies of the trend and fluctuation subsignals forthe signals given in problems 2.1.1 (a)–(d), and
show that their sums are equal to the energies of the signalsf .

2.2.2 Compute the percentage of compaction of the energy off by the 1-level Haar transform, in terms ofEa1/Ef , for
each of the signalsf in problem 2.1.1 (a)–(d).

2.2.3s Another way to measure compaction is by the percentage of Haar transform values that are less than some
small, preassigned numberǫ (> 0). Compute the percentage of 1-level Haar transform values which are less than
ǫ = 0.05 for each of the signalsf in problem 2.1.1 (a)–(d).

2.2.4 For problem 2.2.3, change the value ofǫ to ǫ = 0.05 Ef (so thatǫ depends onEf ) and recompute the percentage
of compaction of the energy off by the 1-level Haar transform, in terms ofEa1/Ef , for each of the signalsf in problem
2.1.1 (a)–(d).

2.2.5c
s Find the energies of the trend and fluctuation subsignals forthe signals given in problem 2.1.5 (a)–(d), and show

that their sums are equal to the energies of the signalsf . [Hints: In FAWAV , useAnalysis/Statisticsto compute energies
for discrete signals. To computeEa1 you can modify the1-level transform by plotting the functiong1(x)(x<1/2)
and then calculating the energy of the resulting signal. Similarly, the functiong1(x)(x >= 1/2) will plot the first
fluctuation.]

2.2.6c Usingǫ = 0.05 Ef compute the percentage of compaction of the energy off by the 1-level Haar transform, in
terms ofEa1/Ef , for each of the signalsf in problem 2.1.5 (a)–(d). [Hint: You can also plot a graph indicating where
x-values are smaller in magnitude than some numberc by using the formula(abs(g1(x))<c) ]

2.2.7 Find the1-level,2-level, and3-level Haar transforms of the following signals.

(a) (8, 32, 48, 48, 64, 64, 40,−8)

(b)s (−16,−16,−16, 32, 48, 48, 96, 96)

(c) (16, 16, 32, 48, 64, 72, 72, 72, 72,−16,−64,−32,−32, 40, 64, 16)

(d) (8, 8, 0,−8,−16, 24, 24, 24, 24, 16, 8, 0, 8, 8, 8,−16)

Section 2.3

Example 2.3.1 For f = (3, 2,−1, 4) andg = (2,−2, 2,−2), find the scalar productf · g.

Solution.f · g = 3(2) + 2(−2) − 1(2) + 4(−2) = −8.

Example 2.3.2 Compute the inverse 1-level Haar transform of

(a1 |d1) = (0, 1, 0, . . . , 0 | 0, 0, . . . , 0),
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and of
(a1 |d1) = (0, 0, . . . , 0 | 0, 1, 0, . . . , 0).

Solution.For the inverse transform of(0, 1, 0, . . . , 0 | 0, 0, . . . , 0) We find thatf3 = (a2 + d2)/
√

2 = 1/
√

2 andf4 =
(a2 − d2)/

√
2 = 1/

√
2 and all other values off are0. Thus the inverse transform is(0, 0,

√
2/2,

√
2/2, 0, 0, . . . , 0).

For the inverse transform of(0, 0, . . . , 0 | 0, 1, 0, . . . , 0) we find thatf3 = (a2 + d2)/
√

2 = 1/
√

2 and f4 =
(a2−d2)/

√
2 = −1/

√
2 and all other values off are0. Thus the inverse transform is(0, 0,

√
2/2,−

√
2/2, 0, 0, . . . , 0).

2.3.1 Find the scalar productf · g whenf andg are the following:

(a)s f = (2, 1, 3, 4), g = (−1, 2,−2, 1)

(b) f = (3, 2,−1, 2), g = (1, 3, 1,−1)

(c)s f = (1, 1,−1,−1, 2, 2,−2, 2), g = (0, 1, 0, 1, 2, 2, 1, 1)

(d) f = (1, 1, 3), g = (1, 0, 2)

2.3.2 Prove Property 1.

2.3.3 When will a second fluctuation valued2
k equal zero?

2.3.4 Is the following statement true or false?Whenever the fluctuation valued2
1 = 0, then the signalf is constant

over the support ofW2
1.

2.3.5s Compute the inverse 1-level Haar transform of

(a1 |d1) = (1, 0, . . . , 0 | 0, 0, . . . , 0),

and of
(a1 |d1) = (0, 0, . . . , 0 | 1, 0, . . . , 0).

Section 2.4

Example 2.4.1 For f = (3, 2,−1, 4) andg = (2,−2, 2,−2), find the sumf + g, the differencef − g, and the
combination2f − 3g.

Solution.We calculate that

f + g = (3 + 2, 2 − 2,−1 + 2, 4 − 2) = (5, 0, 1, 2)

f − g = (3 − 2, 2 + 2,−1 − 2, 4 + 2) = (1, 4,−3, 6)

2f − 3g = (6 − 6, 4 + 6,−2 − 6, 8 + 6) = (0, 10,−8, 14).

Example 2.4.2 For f = (2, 2, 4, 6,−2,−2,−2, 0) find the first averaged signalA1 and the first detail signalD1.

Solution.The trenda1 and fluctuationd1 satisfy

a1 = (2
√

2, 5
√

2,−2
√

2,−
√

2)

d1 = (0,−
√

2, 0,−
√

2).
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Hence

A1 = (2, 2, 5, 5,−2,−2,−1,−1)

D1 = (0, 0,−1, 1, 0, 0,−1, 1).

and, as a check, we observe thatA1 + D1 = f .

Example 2.4.3 For f = (2, 2, 4, 6,−2,−2,−2, 0) find the second averaged signalA2 and the second detail signal
D2.

Solution. We found in the previous example thata1 = (2
√

2, 5
√

2,−2
√

2,−
√

2). The second trend is thena2 =
(7,−3), and the second fluctuation isd2 = (−3,−1). Therefore,

A2 = (
7

2
,
7

2
,
7

2
,
7

2
,
−3

2
,
−3

2
,
−3

2
,
−3

2
)

D2 = (
−3

2
,
−3

2
,
3

2
,
3

2
,
−1

2
,
−1

2
,
1

2
,
1

2
).

and, as a check, we observe thatA2 + D2 = A1.

Example 2.4.4 [Figure 2.3] The graphs in Figure 2.3 were created by graphing the function in given in Example
2.1.3, and then choosingSeries/Waveletand selectingHaar for the wavelet, using10 for the number of Levels, and
choosingAscending termsfor the Series type. You then enter successively1, 2, 4,. . . , 512 for the number of terms to
use (in the text box to the right ofAscending terms:). For1, we get the plot ofA10, for 2 we get the plot ofA9, for 4
we get the plot ofA8, . . . , for512 we get the plot ofA1.

2.4.1 For the following signals,f andg, compute their sumf + g, their differencef − g, and the constant multiples
3f and−2g.

(a)s f = (2, 3, 2, 4), g = (1, 2,−1, 3)

(b) f = (4, 2, 1, 1, 0, 0), g = (−1, 2, 1, 2,−1, 3)

(c)s f = (−1,−1, 1, 1, 1, 1), g = (1, 2, 0, 1,−1, 1)

(d) f = (1, 1, 2, 1), g = (1, 2,−3,−4)

2.4.2s For each of the signals in problem 2.1.1, compute the first averaged signalA1 and the first detail signalD1.

2.4.3 Find expressions for the first averaged signalA1 and the first detail signalD1 in terms of the values off =
(f1, f2, . . . , fN ).

2.4.4 For each of the following signals, compute the first averagedsignalA1 and the first detail signalD1.

(a)s (2, 1, 3,−1, 2, 4, 3, 4)

(b) (1, 2, 3, 4, 5, 6, 7, 8)

(c)s (1, 2,−1,−1, 4, 3, 2, 2)

(d) (9, 4, 1, 0, 0, 1, 4, 9)

2.4.5 Express the2nd averaged signalA2 and the2nd detail signalD2 in terms of the values off = (f1, f2, . . . , fN ).

2.4.6s For each of the signals in problem 2.4.4, compute the2nd averaged signalA2 and the2nd detail signalD2.
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Section 2.5

Example 2.5.1 Produce graphs like the ones shown in Figure 2.4 for1024 samples of the following signal:

f(x) = 3(1 < x < 4) − 2(5 < x < 8) + 4(10 < x < 18)

over the interval[0, 20]. What threshold should be used to retain99.99% of the energy? What compression ratio does
this produce, and what is the maximum error between the original signal and the compressed signal?

Solution.ChoosingNew 1-dimfrom the FAWAV menu and then choosingGraph/Plot, we plot the formula above over
the interval of type[0, L] settingL = 20. This produces the graph shown in Figure 1(a) (after we choose View/Display
styleand selecting aBlank Grid style and aDots Plot style). SelectingTransform/Waveletand choosingHaar with
10 levels, we obtain the Haar transform shown in Figure 1(b) (after choosingView/Display styleand changing the
Y -range to−20, 20). By right-clicking on the Haar transform graph and choosingSort magnitudesand then right-
clicking again and choosingEnergy mapand entering2 for the graph number (leaving thepercentagebox checked),
we produce the graph shown in Figure 1(c) (after right-clicking and choosingClip and clipping graph3). Finally, by
choosingAnalysis/Tracefrom the menu of the window containing the Haar transform along with its sorted magnitudes
and energy map, we find by tracing on the three graphs that100% of the energy is used when the Index is45 (i.e.,
46 values used because in FAWAV the Index counter for arrays of data is initialized at0 rather than1), this represents
1024/46 ≈ 22 to 1 compression.

We also find by tracing that99.99% of the energy is used when a threshold of0.5 is used. By graphing the
function g1(x)(abs(g1(x)) > 0.5) we produce a fourth graph that is a thresholded transform. Then by choosing
Transform/Wavelet, selecting Haarwith the Inverse box checked,and entering4 for the graph number, we plot an
approximation of the given step function. We then right-click on the graph of this approximation, chooseCopy,return
to the window with the original function displayed and right-click on its graph followed by selectingPaste. This
pastes the approximate function data into the window, for comparison with the original graph. SelectingAnalysis/Norm
differenceand using the default values (Sup-norm,graphs1 and2, andabsolute) we find that the maximum error (in
magnitude) between the original signal and the approximation is0.1094. (Note: since the original signal consists of
integer values, by graphing the functiongri(g2(x)+1/2) we round the approximate signal values to their nearest
integers. Thus producing a signal that is equal to the original signal at all values.)

Example 2.5.2 [Figure 2.4] To produce Figure 2.4(a) you graph

(2<=x<4)-(6<=x<9)+2[14<=x<18]-2(10<= x< 11)

over the interval[0, 20]. Figure 2.4(b) is obtained using a 10-level Haar transform.To get Figure 2.4(c) you right-click
on the graph of the Haar transform and selectSort magnitudesthen right-click again and selectEnergy graph. You then
plot the energy graph for graph 2 (the sorted magnitude graph). Figure 2.4(d) was obtained by selectingAnalysis/Trace
and using the tracing tool to determine that the52 highest magnitude transform values account for100% of the energy
of the signal. Then, by returning to the window containing the original signal, selectingSeries/Waveletand performing
a Haar series2 with Series typeHighest mag. coefficients, and entering52 for the number of coefficients, we obtain the
graph shown in Figure 2.4(d).

Example 2.5.3 [Figure 2.5] Figure 2.5 is produced in the same way as Figure 2.4 (see preceding example), except
that4096 points are used and the following function

40xˆ2(1-x)ˆ4cos(12pi x)[0<x<1)+{40(x-1)ˆ2(2-x)ˆ8cos( 48pi x)
+80(x-1)ˆ12[2-x]ˆ2sin(80pi x)}[1<x<2]

is graphed over[0, 2] to produce the initial signal.

2.5.1c
s Produce graphs like the ones shown in Figure 2.4 for1024 samples of the following signal:

f(x) = 2[1 < x < 2] − 3[3 < x < 5] + [6 < x < 7] + 4[8 < x < 9]

2See theRemark on the next page.
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Figure 1
(a) Signal, (b) 10-level Haar transform, (c) energy map of Haar transform, (d) 22:1 compression of Signal, 100% of energy.

over the interval[0, 10]. What threshold should be used to retain99.99% of the energy? What compression ratio does
this produce, and what is the maximum error between the original signal and the compressed signal? [Note: maximum
error is computed using thesup-normmethod described below in Example 2.5.4.]

2.5.2c Repeat problem 2.5.1 for each of the following:

(a)s f(x) = x(10 − x)

(b) f(x) = 2[2 < x < 4] − 2[5 < x < 7] + 2[8 < x < 9]

(c) f(x) = 2[2 < x < 4] − x[5 < x < 7] + 2[8 < x < 9]

Remark. The next three exercises deal with Haar wavelet series. Awavelet seriesis a convenient term for the following
three step process:

1. Compute a transform, either wavelet or wavelet packet.

2. Modify the transform values from Step 1.

3. Compute the inverse transform of the modified values from Step 2.

There are a number of ways to carry out the modification of the wavelet transform values in Step 2. The most common
method is to threshold the values. When a threshold method is used, we say that the three step process produces a
thresholded series.To produce a thresholded series with FAWAV , you begin by selectingSeriesfrom the menu. You
then select eitherWaveletor Wavelet packetto specify which of the two types of transform will be used. A dialog box
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will then appear on the right side of the window, and you select Thresholdas the method for the series. Another type of
series isHighest mag.,which modifies the transform values by using only a specified number of the highest magnitude
transform values (setting all others equal to zero).

Example 2.5.4 For the function in Example 2.5.1, compute the Haar series using the30 highest magnitude values.
What is the sup-norm difference between the function and its wavelet series? What is theSup-norm differenceover the
interval[2, 3]?

Solution. We plot the function as described in the solution of Example 2.5.1. SelectingTransform/Waveletand then
Haar for the transform andHighet mag. coefficientswith 30 as the number, we obtain an approximation of the original
signal. Thesup-norm differencebetween the two signal is1.98. To find the sup-norm difference over the interval[2, 3]
we chooseView/Display styleto change theX-interval to[2, 3]. The graphs are then displayed over the interval[2, 3]
and computing a sup-norm difference between them yields0.0117.

2.5.3c
s For the functions in problem 2.5.2 (a) and (b), compute the Haar series using the50 highest magnitude values.

Which function is best approximated by such a Haar series? Why?

2.5.4c For the Haar series graphed in problem 2.5.3, what is the maximum error between the original function and
the Haar series over the interval[2.5, 3.5], and over the interval[5.5, 6.5]? Why are the two errors very similar over
[2.5, 3.5], but not over[5.5, 6.5]?

2.5.5 Suppose a Haar transform(ak |dk | . . . |d1) is thresholded, producing a signal(ãk | d̃k | . . . | d̃1), and then
an inverse Haar transform is performed on the thresholded signal, producing a Haar series. Find an expression for this
Haar series in terms of scaling signals and wavelets.

Section 2.6

Example 2.6.1 [Figure 2.6] To get Figure 2.6(a), you graph

.1ran(x)+(2<=x<4)-(6<=x<9)+2[14<=x<18]-2(10<= x< 11)

over[0, 20]. Figure 2.6(b) was obtained in the following way. First, a Haar transform with 10 levels was performed and
then theY -interval changed to[−4, 4]. Second, by using theTracetool, or by right-clicking on the Haar transform and
selectingDisplay cursor coordinatesto use the mouse to scan over the graph box with a readout ofx- andy-values, we
determined that0.2 was a good threshold for removing noise. (The horizontal graphs in Figure 2.6(b) were obtained by
plotting 0.2 and-0.2 with theAuto-fitoption unchecked.) To get the thresholded transform shown in Figure 2.6(c),
we plotted the function

g1(x)(abs(g1(x))>c) \c=0.2

Finally, to obtain the denoised signal in Figure 2.6(d) we performed an inverse Haar transform on the thresholded
transform.

Example 2.6.2 [Figure 2.7] The graphs in Figure 2.7 were obtained in the same way as Figure 2.6, except that the
initial noisy signal was graphed using the formula

.1ran(x)+40xˆ2(1-x)ˆ4cos(12pi x)[0<x<1)
+{40(x-1)ˆ2(2-x)ˆ8cos(48pi x)+80(x-1)ˆ12[2-x]ˆ2sin(8 0pi x)}[1<x<2]

over the interval[0, 2] using4096 points, and12 levels were used for the Haar transform.

2.6.1c Graph the random noise signal,f(x) = rang(x), over the interval[0, 1] using8192 points. Then play the
sound generated by this signal, usingGraph/Audioin FAWAV , with a sampling rate of8820, a bit rate of16 bits, and
volume level of32000. What does this random noise sound like?

2.6.2c
s Perform a 1-level Haar transform of the signal in problem 2.6.1. What does this Haar transform look like, and

what does it sound like (when it is played using the same parameter values as in 2.6.1)?
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2.6.3c Using the Threshold Method, denoise each of the following signals (in each case, use1024 points and[0, 10]
as interval):

(a)s f(x) = 40[2 < x < 4] − 60[5 < x < 7] + 80[8 < x < 9] + 10 rang(x)

(b) f(x) = 4 sin(2πx) + 10 rang(x)

(c) f(x) = 40[2 < x < 4] + 8x[5 < x < 7] + 40[8 < x < 9] + 10 rang(x)

(d)s f(x) = [40 cos(2πx)](2 < x < 6) + 10 rang(x)

Which denoisings would you deem to be the most successful, andwhy?

2.6.4 Explain the cause of the very ragged, jumpy appearance of thedenoised signal in Figure 2.7(d).

Chapter 3

Section 3.1

Example 3.1.1 [Figure 3.1] The graphs ofV5
1, V5

8 andV5
16 were produced in the following way. To produceV5

1

we applied the5th level inverse Daub4 transform to the signal(1, 0, 0, . . . , 0). This signal was produced by plotting
the formuladel(x) over the interval[0, 1024] with 1024 points. We then choseTransform/Waveletand selected
the Daub 4 option with 5 levels. To produceW5

1 we applied the5th level inverse Daub4 transform to the signal
(0, . . . , 0, 1, 0, . . . , 0 where the1 is in the33rd position (that signal was produced by plotting the formuladel(x-32)
over the interval[0, 1024] with 1024 points). The reason this works is explained in detail in the subsectionDaub 5/3
transform, multiple levels in section 3.7. As explained in that subsection, we produceVm

k by applying them-level
inverse Daub4 transform to the signal(0, . . . , 0, 1, 0, . . . , 0) where the1 is in thekth position,k = 1,. . . , N/2m; and
we produceWm

k by applying them-level inverse Daub4 transform to the signal(0, . . . , 0, 1, 0, . . . , 0) where the1 is in
thek + N/2m position,k = 1,. . . ,N/2m.

Example 3.1.2 [Figure 3.2] To produce Figure 3.2(a) we plotted the formula20xˆ2(1-x)ˆ4cos(12pi x) over
the interval[0, 1] using1024 points. Figure 3.2 was then created by choosingTransform/Wavelet, and selecting the
Daub 4option with2 levels. Figures 3.2(c) and (d) were plotted by selectingView/Display stylefrom the menu for the
graph of the original signal and changing theX andY intervals to the ones shown.

Example 3.1.3 [Figure 3.3] Figure 3.3 was produced in the same way as Figure 2.3 (see Example 2.4.4), except that
Daub 4 was used as the choice of wavelet.

3.1.1s Explain whyV2
m has a support of10 time-units and is a translate ofV2

1 by 4(m − 1) time-units. (Ignore
wrap-around.)

3.1.2 The3rd level Daub4 scaling signals and wavelets have supports of how many time-units? Are they all shifts of
V3

1 andW3
1?

3.1.3s Does0α1 + 1α2 + 2α3 + 3α4 = 0 hold for the Daub4 scaling numbers?

3.1.4 Show that Property I holds for2-level wavelets, i.e.,if a signal f is (approximately) linear over the support of
a 2-level Daub4 waveletW2

m, then the2-level fluctuation valuef · W2
m is (approximately) zero.

3.1.5c Plot 1-level Daub4 transforms of the following functions—sampleduniformly over [0, 1] using1024 points.
[Note: These are the same functions considered in problem 1.1.5.]

(a) f(x) = x2(1 − x)

(b)s f(x) = x4(1 − x)6 cos 64πx
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(c) (0.2 < x < 0.3) − 3(0.4 < x < 0.5) + 2(0.5 < x < 0.8)

(d) f(x) = sgn(sin 12πx)

Remark. In order to use FAWAV to graph the averaged signals—A1, A2, A3, etc.—you proceed as follows. After
plotting the signalf , you then chooseSeries/Waveletand selectAscending termsas the series choice. If you specify
N/2 number of terms (whereN is the number of points), then the first averaged signalA1 will be plotted. Or, if you
selectN/4 number of points, thenA2 will be plotted. Or, by selectingN/8 number of points, thenA3 will be plotted.
(This method of plotting averaged signals is equivalent to taking a wavelet transform, then setting all values of the
transform to0 for indices aboveN/2, N/4, or N/8, and then inverse transforming.)

3.1.6c Compute the Daub4 averaged signalsA1, A2, A3, andA4 for the function

g(x) = 20x4(1 − x)6 cos 48πx

over the interval[0, 1] using1024 points.

3.1.7c
s What is the maximum error (over all points) between each of theaveraged signals in problem 3.1.6 and the

given signal?

3.1.8c Repeat problems 3.1.6 and 3.1.7 for the signal

g(x) = 20x2(1 − x)2 cos 64πx + 30x2(1 − x)4 sin 30πx.

3.1.9 Show thatf · W1
m = O(h) whenW1

m is a 1-level Haar wavelet. [Hint: Use Formula (3.15).]

3.1.10cs Repeat problem 1.5.2, but use a Daub4 transform instead of a Haar transform.

3.1.11c Repeat problem 1.5.3, but use a Daub4 series instead of a Haarseries. Which function is best approximated
by a Daub4 series? Why?

Section 3.2

Example 3.2.1 [Figure 3.4] Figure 3.4 was created by first plotting the function

50xˆ2(1-x)ˆ6cos(12pi x)(0<x<1)+80(1-x)ˆ2(2-x)ˆ8sin(2 0pi x)(1<x<2)

over the interval[0, 2] using 4096 points. Then, the graph in (a) was created by selectingTransform/Waveletand
choosing a Haar wavelet with 2 levels. The corresponding cumulative energy profile in (c) was created by right-clicking
on the Haar transform graph and selectingEnergy graph.The graphs in (b) and (d) were created in a similar way, except
that a Daub4 transform was used.

3.2.1 Verify Equations (3.17a)–(3.17c).

3.2.2c
s Compute the3-level Daub4 transform of the signalf obtained from1024 uniformly spaced samples of

g(x) = x2(4 − x)4 sin 12πx

over the interval[0, 4]. Compute the energy off and of its transform and check that conservation of energy holds.

3.2.3c Usingǫ = 0.0001 Ef , compute the percentage of1-level Daub4 transform values which are less thanǫ for each
of the signals in problem 1.1.5 (a)–(d). Compare your results with a1-level Haar transform [see problem 2.2.6].

3.2.4c
s Repeat problem 3.2.3, but use a2-level Daub4 transform instead. Compare your results with a2-level Haar

transform.



Examples and Exercises forA Primer on Wavelets:Chapter 3 12

Section 3.3

Example 3.3.1 [Figure 3.5] The signal analyzed in Figure 3.5 was created by plotting theformula

50xˆ2(1-x)ˆ6cos(12pi x)(0<x<1)+80(1-x)ˆ2(2-x)ˆ8sin(2 0pi x)(1<x<2)

over the interval[0, 2] using4096 points. To compute1000 times its fluctuationd1, we plotted the1-level Daub4
transform and then graphed

1000g1(x/2+1)

To compute30 times the fluctuation of its fluctuationd3 we plotted its3-level Daub4 transform and then graphed

30g1(x/8+1/4)

Similar computations were done for the Daub6 case.

Example 3.3.2 [Figure 3.6] Figure 3.6 was produced in the same way as Figure 2.3 (see Example 2.4.4), except that
Daub 20 was used as the choice of wavelet.

Example 3.3.3 [Figure 3.7] Figure 3.7 was produced in the same way as Figure 3.1 (see Example 3.1.1), except that
an inverse Coif 6 transform was used.

3.3.1s Show that iff is obtained from samples of a3-times continuously differentiable functiong over the support of
a1-level Daub6 waveletW1

m, then the fluctuation valuef · W1
m satisfiesf · W1

m = O(h3).

3.3.2c Compute the Daub6 averaged signalsA1, A2, A3, andA4 for the function

g(x) = 20x4(1 − x)6 cos 48πx

over the interval[0, 1] using1024 points.

3.3.3c
s What is the maximum error (over all points) between each of theaveraged signals in problem 3.3.2 and the

original signal.

3.3.4c Repeat problems 3.3.2 and 3.3.3 for the signal

g(x) = 20x2(1 − x)2 cos 64πx + 30x2(1 − x)4 sin 30πx.

3.3.5c Repeat problem 2.5.2, but use a Daub6 wavelet series insteadof a Haar series.

3.3.6c Repeat problem 2.5.3, but use a Daub6 wavelet series insteadof a Haar series. Which function is best approx-
imated by a Daub6 series? Why?

3.3.7c Repeat problem 2.5.2, but use a Daub8 wavelet series insteadof a Haar series.

3.3.8c Repeat problem 2.5.3, but use a Daub8 wavelet series insteadof a Haar series. Which function is best approx-
imated by a Daub8 series? Why?

3.3.9c
s For the following function, compute the minimum number of terms needed to capture99.99% of the energy in

a DaubJ series for eachJ = 4, 6, 8 and for each levelL = 1, 2, . . . , 6 (using1024 points over the interval[0, 1]):

g(x) = x2(1 − x)6 cos 25πx.

Note:To determine the minimum number of terms you use the optionEnergy fractionfor a wavelet series and enter the
value0.9999 to require99.99% of the energy. A report is displayed that indicates the number of terms used.

3.3.10c Repeat problem 3.3.9 for the DaubJ series,J = 10, 12, 14.

3.3.11c Repeat problem 3.3.9 for each of the following functions (and use Haar series as well as DaubJ series):
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(a) g(x) = [0.1 < x < 0.2] − 3[0.3 < x < 0.5] + 9[0.7 < x < 0.9]

(b) g(x) = x[0.1 < x < 0.2] − x2[0.3 < x < 0.5] + 9[0.7 < x < 0.9]

(c) g(x) = [0.1 < x < 0.2] cos 40πx − [0.3 < x < 0.5] sin 30πx + [0.7 < x < 0.9] cos 40πx

(d) g(x) = [0.1 < x < 0.2] sin 40πx + [0.3 < x < 0.5]2 sin 30πx + [0.7 < x < 0.9] sin 60πx

3.3.12cs Repeat problem 3.3.9, but use CoifI series forI = 6, 18, 30.

3.3.13c Repeat problem 3.3.11, but use CoifI series forI = 6, 18, 30.

3.3.14c Compare 3-level Coif6 trend values with2
√

2g(8x) over the interval[0, 0.125], whereg(x) is defined by
Equation (3.35) [use214 samples over the interval[0, 1] as in the text]. Do the same for the Daub4 transform.Note:By
“compare” we mean determine the maximum error.

3.3.15cs For the following functiong(x) over the interval[0, 1]:

g(x) = 40x4(1 − x)6 cos 24πx

compare
√

2g(2x) over the interval[0, 0.5] with the 1-level CoifI trend values forI = 6, 12, 18, 24, 30. [Use212 sam-
ples, and by “compare” we mean find the maximum error.] Do the same for DaubJ trend values forJ = 6, 12, . . . , 18.

3.3.16cs Repeat problem 3.3.15, but compare2g(4x) over[0, 0.25] with CoifI and DaubJ 2-level trend values.

Section 3.4

Example 3.4.1 [Figure 3.8] Figure 3.8 is produced in the same way as Figure 2.5 (see Example 2.5.3), except that a
Coif30 transform is used.

3.4.1c Produce graphs like the ones shown in Figures 2.4 and 3.8 for1024 samples of the following signals over the
interval[0, 10]:

(a) f(x) = x

(b) f(x) = 2[2 < x < 4] − 2[5 < x < 7] + 2[8 < x < 9]

(c) f(x) = 2[2 < x < 4] − x[5 < x < 7] + 2[8 < x < 9]

(d)s f(x) = 0.001x4(10 − x)2

What thresholds should be used to capture99.99% of the energy using a 10-level Daub4 wavelet transform? What
compression ratios do these produce, and what are the maximum errors between the original signals and the compressed
signals?

3.4.2c Repeat problem 3.4.1, but use a 10-level Daub18 transform.

3.4.3c Repeat problem 3.4.1, but use a 10-level Coif12 transform.

3.4.4c Repeat problem 3.4.1, but use a 10-level Coif30 transform.

3.4.5c
s For each of the functions in problem 3.4.1, find the level (from 1 to 10) which uses the least number of Daub4

transform values to capture99.99% of each signal’s energy. [Hint: Use theenergy percentagemethod for forming
wavelet series.]

3.4.6c Repeat problem 3.4.5, but use a Daub12 transform.
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3.4.7c
s Repeat problem 3.4.5, but use a Coif18 transform.

3.4.8c Repeat problem 3.4.5, but use a Coif30 transform.

3.4.9c Record your own voice saying the word “alfalfa” at 8000 Hz and8 bpp. Using a Coif30 series, determine the
level that uses the least number of transform values that capture99.99% of the energy of the audio signal.

3.4.10c Repeat problem 3.4.9, but with a recording of “alfalfa” at 16bpp.

3.4.11c Repeat problem 3.4.9, but with a recording of “alfalfa” at22, 050 Hz and 8 bpp.

3.4.12c Repeat problem 3.4.9, but with a recording of “alfalfa” at22, 050 Hz and 16 bpp.

Section 3.5

Example 3.5.1 [Figure 3.10] To graph the signal in (a) you selectNew 1-dimfrom the menu, right-click on the graph
area and selectLoad/Sound file,and selectgreasy.wav as the sound file to load. To plot the histogram in (b) you
right-click on the graph and selectHistogram. You then choose an 8-bit histogram with the both the choicesInclude
zero valuesand Include sign bitchecked. To obtain the graph in (c) you perform a 14-level Coif30 transform of the
signal in (a). Finally, to get the graph in (d) you compute a histogram of the transform, but uncheck the choiceInclude
zero valuesand make sure that the choiceInclude zero valuesis checked. (We call this adead-zone histogram.)

Example 3.5.2 [Figure 3.11] To obtain the plot of the fourth trend of in (a), you plot a4-level Coif30 transform of
thegreasy.wav signal, selectView/Display,and plot over the newX-interval: 0,.743038548752834/2ˆ4 To
obtain the graph in (b) you plot a histogram with theInclude zero valuesunchecked. To obtain the graph in (c), you
change theX-interval of the Coif30 transform to.743038548752834/2ˆ4,.743038548752834 . To obtain the
histogram in (d) you compute a dead-zone histogram of the graph from (c).

3.5.1c Draw a plot of theentropy function,f(x) = x log2(1/x) over the interval[0, 1]. [Hint: In FAWAV , there is
a built-in function,entr(x), which calculatesx log2(1/x).] Find the point where the maximum of this function lies,
either by numerical estimation (using theAnalysis/Traceprocedure) or by calculus.

3.5.2s Show that the entropy of the uniform probability sequence,pk = 1/N for k = 1, 2, . . . , N , is log2 N .

3.5.3 Find the entropy of the sequencepk = c 2−k, k = 1, 2, . . . , 16 (wherec = 1/
∑16

k=1 2−k).

3.5.4c
s Make a recording of the word “alfalfa” at 8000 Hz and 16 bpp. Estimate—as was done in the text forgreasy—

the number of bpp needed for an optimal, entropy-based compression of this recording of “alfalfa” (using 16 bpp), then
compare this with a maximum-level Coif30 transform at 16 bppand with a 4-level Coif30 transform at 16 bpp for the
trend and 12 bpp for the fluctuations.

3.5.5c Repeat problem 3.5.4, but using22 050 Hz and 16 bpp.

3.5.6c
s For problems 3.5.4 and 3.5.5, calculate the Sup-norm and relative 2-norm errors between the original and

compressed signals. [Note: The compressed signals can be plotted usingThresholded wavelet series,when the settings
are adjusted (press the button labeledEdit settings) to Quantized thresholdingand eitherUniform thresholdor Multiple
thresholdsare selected.]

Section 3.6

Example 3.6.1 [Figure 3.12] To produce the graph in Figure 3.12(a), we plotted the function

.1ran(x)+40xˆ2(1-x)ˆ4cos(12pi x)[0<x<1)+{40(x-1)ˆ2(2 -x)ˆ8cos(48pi x)
+80(x-1)ˆ12[2-x]ˆ2sin(80pi x)}[1<x<2]
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over the interval[0, 2] using4096 points. The graph in (b) was obtained by a12-level Coif30 transform of this signal,
and then changing to theY -interval [−2, 2]. By right-clicking on the graph and selectingDisplay cursor coordinates
we were able to scan over the graph and obtain0.2 as a threshold for eliminating noisy transform values. To obtain the
plot in (c) we plotted the function

g1(x)(abs(g1(x))>0.2)

whereg1(x) stands for the transform values. Then by applying an inverseCoif30 transform to the graph in (c) we
obtained the graph shown in (d), the denoised signal.

Example 3.6.2 [Figure 3.13] To produce the graph in Figure 3.13(a), we plotted the function 0.5rang(0) over
[0, 1] using4096 points. The mean and standard deviation of this noise were found by selectingAnalysis/Statisticsfrom
the menu. To graph the histogram in (b) we calculated an8-bit histogram with both options (Include zero valuesand
Include sign bit) checked. To obtain the graph in (c) we performed a12-level Coif30 transform of the noise signal from
(a). We then calculated a histogram [the same type as we did with (a)] to get the graph in (d).

Example 3.6.3 [Figure 3.14] To get the graph in (a) we loaded the sound filenoisy_wolf_whistle.wav . The
graph in (b) was obtained by performing a15-level Coif18 transform of this sound file. To obtain the graph in (c) we then
processed this transform by selectingGraph/Plotand plotting the formula contained in the filefig_3_14_(c).uf1
(by clicking on theLoad button under the formula text area). This is one of the files that is contained in the zip
file BookFigures.zip that accompanies these exercises. After producing the processed transform in (c) we then
performed an inverse transform on it to produce the denoisedsignal in (d).

3.6.1c Using the threshold method, denoise each of the following signals (each of which is defined over the interval
[0, 10] using1024 points). Use a 10-level Coif30 transform.

(a) 20(2 < x < 4) - 30(5<x<7) + 40(8<x<9) + 5rang(0)

(b)s 40cos(4pi x) + 5rang(0)

(c) 20[2< x < 4] + 5x[5 < x < 7] + 20[8 < x < 9]+ 5rang(0)

(d) 40cos(4pi x)(2 < x < 6) + 5rang(0)

Which denoisings would you deem to be the most successful, andwhy?

3.6.2c Repeat problem 3.6.1, but use a 4-level Coif30 transform.

3.6.3c Repeat problem 3.6.1, but use a 10-level Coif18 transform and also a 4-level Coif18 transform.
Remark In Exercises 3.6.4 to 3.6.6, you should use the built-in wavelet denoising method obtained by selectingDe-
noise/Waveletand checking the box labelledAverage.Try 5-levels for the wavelet transform. This procedure automati-
cally selects the threshold and performs an average of denoisings of shiftings of the signal (this further reduces noise).

3.6.4c Accompanying these exercises is a data file,noisy word 1.wav which is a noisy version of the audio file
alfalfa_2.wav . Use wavelet-based denoising to denoise this signal. What percentage reduction of RMS do you
obtain?

3.6.5c Repeat problem 3.6.4, but for the audio filenoisy word 2.wav.

3.6.6c Repeat problem 3.6.4, but for the audio filenoisy word 3.wav.

Section 3.7

Example 3.7.1 For the signalf = (8, 16, 8,−8, 0, 16), compute its1-level Daub 5/3 transform.
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Solution.Using the formulas for the analysis scaling vectors{Vk} and the equationak = f · Vk we obtain

a1 = (8, 16, 8,−8, 0, 16) · (3

4
,
1

2
,
−1

4
, 0, 0, 0) = 12

a2 = (8, 16, 8,−8, 0, 16) · (−1

8
,
1

4
,
3

4
,
1

4
,
−1

8
, 0) = 7

a3 = (8, 16, 8,−8, 0, 16) · (0, 0,
−1

8
,
1

4
,
5

8
,
1

4
) = 1.

Similarly, we computedk from dk = f · Wk where{Wk} are the analysis wavelets:

d1 = (8, 16, 8,−8, 0, 16) · (−1

2
, 1,

−1

2
, 0, 0, 0) = 8

d2 = (8, 16, 8,−8, 0, 16) · (0, 0,
−1

2
, 1,

−1

2
, 0) = −12

d3 = (8, 16, 8,−8, 0, 16) · (0, 0, 0, 0,−1, 1) = 16.

So the1-level Daub 5/3 transform is(a1 |d1) = (12, 7, 1 | 8,−12, 16).

Example 3.7.2 [Figure 3.15] As explained in the subsection,Daub 5/3 transform, multiple levels, we produce
Ṽm

k by applying them-level inverse Daub 5/3 transform (selectDD 5/3 (2,2) as the transform type) to the signal
(0, . . . , 0, 1, 0, . . . , 0) where the1 is in thekth position,k = 1,. . . , N/2m; and we producẽWm

k by applying them-
level inverse Daub4 transform to the signal(0, . . . , 0, 1, 0, . . . , 0) where the1 is in thek + N/2m position,k = 1,. . . ,
N/2m.

3.7.1c Compute the Daub 5/3 averaged signalsA1, A2, A3, andA4 for the function

g(x) = 20x4(1 − x)6 cos 48πx

over the interval[0, 1] using1024 points.

3.7.2c
s What is the maximum error (over all points) between each of theaveraged signals in problem 3.7.1 and the

original signal.

3.7.3c Repeat problems 3.7.1 and 3.7.2 for the signal

g(x) = 20x2(1 − x)2 cos 64πx + 30x2(1 − x)4 sin 30πx.

3.7.4c Repeat problem 2.5.3, but use a Daub 5/3 wavelet series instead of a Haar series. Which function is best
approximated by a Daub 5/3 series? Why?

3.7.5c
s For the following function, compute the minimum number of terms needed to capture99.99% of the energy in

a Daub 5/3 series for each levelL = 1, 2, . . . , 6 (using1024 points over the interval[0, 1]):

g(x) = x2(1 − x)6 cos 25πx.

3.7.6c
s Compare1-level Daub 5/3 trend values withg(2x) over the interval[0, 0.5], whereg(x) is defined by Equa-

tion (3.35). [Use214 samples over the interval[0, 1] as in the text.] Note: By “compare” we mean determine the
maximum error.

3.7.7c Compare2-level Daub 5/3 trend values withg(4x) over the interval[0, 0.25], whereg(x) is defined by Equa-
tion (3.35). Also compare3-level Daub 5/3 trend values withg(8x) over the interval[0, 0.125]. [Use214 samples over
the interval[0, 1] as in the text.]
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Section 3.8

Example 3.8.1 [Figure 3.16] As explained in the subsection,Daub 5/3 transform, multiple levels, we produce
Ṽm

k by applying them-level inverse Daub 9/7 transform (selectDaug 9/7 as the transform type) to the signal
(0, . . . , 0, 1, 0, . . . , 0) where the1 is in thekth position,k = 1,. . . , N/2m; and we producẽWm

k by applying them-
level inverse Daub4 transform to the signal(0, . . . , 0, 1, 0, . . . , 0) where the1 is in thek + N/2m position,k = 1,. . . ,
N/2m.

3.8.1c Compute the Daub 9/7 averaged signalsA1, A2, A3, andA4 for the function

g(x) = 20x4(1 − x)6 cos 48πx

over the interval[0, 1] using1024 points.

3.8.2c
s What is the maximum error (over all points) between each of theaveraged signals in problem 3.8.1 and the

original signal.

3.8.3c Repeat problems 3.8.1 and 3.8.2 for the signal

g(x) = 20x2(1 − x)2 cos 64πx + 30x2(1 − x)4 sin 30πx.

3.8.4c Repeat problem 2.5.3, but use a Daub 9/7 wavelet series instead of a Haar series. Which function is best
approximated by a Daub 9/7 series? Why?

3.8.5c
s For the following function, compute the minimum number of terms needed to capture99.99% of the energy in

a Daub 9/7 series for each levelL = 1, 2, . . . , 6 (using1024 points over the interval[0, 1]):

g(x) = x2(1 − x)6 cos 25πx.

3.8.6c
s Compare1-level Daub 9/7 trend values with

√
2g(2x) over the interval[0, 0.5], whereg(x) is defined by

Equation (3.35). [Use214 samples over the interval[0, 1] as in the text.]Note: By “compare” we mean determine the
maximum error.

3.8.7c Compare2-level Daub 9/7 trend values with2g(4x) over the interval[0, 0.25], whereg(x) is defined by
Equation (3.35). Also compare3-level Daub 5/3 trend values withg(8x) over the interval[0, 0.125]. [Use214 samples
over the interval[0, 1] as in the text.]

Chapter 4

Section 4.1

Example 4.1.1 For the array 


4 8 8 4
4 8 6 6
4 0 0 4
8 8 4 4




we compute its1-level Haar transform in two steps. First, we find the1-level Haar transform along each row:



6
√

2 6
√

2 −2
√

2 2
√

2

6
√

2 6
√

2 −2
√

2 0

2
√

2 2
√

2 2
√

2 −2
√

2

8
√

2 4
√

2 0 0



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Second, we find the1-level Haar transform of each column of this new array (indexing from the bottom up):



0 0 0 −2
6 2 −2 2
12 12 −4 2
10 6 2 −2




which is the1-level Haar transform.

Example 4.1.2 [Figure 4.1] To graph Figure 4.1(a), you selectNew 2 dimfrom the menu and plot the function

(y-x-c<=0)(x+y-c<=0)(x-y-c<=0)
(x+y+c>=0)(abs(y)<=b)(abs(x)<=b)

\c=12/5\b=8.5/5\Rem Use L = 4

over [−L,L] × [−L,L] usingL = 4. You then right-click on the graph and selectGraph stylewhich allows you to
replot the graph using theGrey (+/-) option. To get the1-level Coif6 transform in Figure 4.1(b), you plot a Coif6
transform of the octagon graph in (a), and then change theGraph styleof the transform toGrey (+/-) with theLinLog
option selected and with a threshold of.0000000001. The graphs in (c) and (d) are obtained in a similar way, except
that2-level and3-level Coif6 transforms are performed, respectively.

Example 4.1.3 [Figure 4.2] To graph Figure 4.2(a), you selectNew 2 dimfrom the File menu and then select
Points/128from theEdit menu. You then graph the formula

del(x+64-2)del(y+32-4)

over[−L,L]× [−L,L] usingL = 64. That produces an image with all values0, except one pixel of value1 (an element
of the standard basis for128 by 128 matrices, which when an inverse Haar transform is applied produces a Haar wavelet.
In fact, you perform a2-level inverseHaar transform, and right-click on the transform’s graph inorder to selectGraph
stylewhich allows you to replot the transform using theGrey (+/-) option. That completes the construction of the image
in (a). The images in Figures (b) to (d) were obtained in a similar way through modifying the formula above (use the
formulas in the archiveBookFigures.zip ).

4.1.1 For each of the following arrays, compute its 1-level Haar transform.

(a)s




2 4 2 0
−2 0 2 2
4 0 2 4
6 8 12 12




(b)




1 3 3 1
2 5 5 2
4 7 7 4
2 7 7 2




(c)




3 1 2 2
1 1 1 1
3 5 7 9
9 7 5 3




(d)




4 6 8 12
4 16 24 32
8 12 6 6
4 4 2 2



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4.1.2s For each of the arrays in problem 4.1.1, compute its 2-level Haar transform.

4.1.3 ComputeW1
1 ⊗ W1

1, whereW1
1 is a Haar wavelet.

4.1.4s ComputeW1
1 ⊗ V1

1, whereW1
1 andV1

1 are a Haar wavelet and Haar scaling signal, respectively.

4.1.5c ComputeV2
3 ⊗ V2

5, V2
3 ⊗ W2

5, W2
3 ⊗ V2

5, andW2
3 ⊗ W2

5, whenV2
j andW2

k are Daub 9/7 scaling signals
and Daub 9/7 wavelets, respectively.

4.1.6 Suppose a 1-level wavelet transform of an imagef hash1 = 0, a1 = 0, andv1 = 0 (i.e., all the values in these
sub-arrays are zero), and suppose thatd1

2,3 = 1 while all other values ofd1 are zero. Show that the inverse transform
yieldsf = W1

2 ⊗ W1
3. How does this result generalize?

Note. For subsequent examples and exercises, you may need todownload images that are not installed by your
initial installation of F AWAV . These additional image files can be downloaded from theImages link at the FAWAV
website.

Section 4.2

Example 4.2.1 [Figure 4.3] To generate the 4:1 compression in the figure you do the following. First, right-click on
an image square on the 2D-form and selectLoad/Imageand load the PGM filebarb.pgm You then selectFile/Save op-
tions (images)and enter atarget rateof 2 bpp. Since the original image is8 bpp that represents a 4:1 compression ratio.
After saving a compressed image (right-click on the original image, chooseSave/Image, and select* .wc2 as file for-
mat), you then load this compressed file (Load/Imagewith * .wc2 as format) and that produces the reconstruction
shown in part (b) of Figure 4.3. The image in (c) was produced by plotting the functiong1 - g2 whereg1 stands for
graph 1 (the original image) andg2 stands for graph 2 (the reconstruction of the 4:1 compression). This third image is
displayed with aGraph styleof Grey (+/-) selected. Finally, the fourth graph in (d) was obtained by right-clicking on
the graph in (c), and then plotting a9-bit histogram.

Example 4.2.2 [Figure 4.4] To generate the 16:1 compression in the figure you load the imagedog_head.pgm then
selectFile/Save options (images)and enter atarget rateof 0.5 bpp. (Since the original image is8 bpp that represents a
16:1 compression ratio.) After saving a compressed image (right-click on the original image, chooseSave/Image, and
select* .wc2 as file format), you then load this compressed file (Load/Imagewith * .wc2 as format) and that produces
the reconstruction shown in part (b) of Figure 4.4.

Example 4.2.3 [Figure 4.5] The image in (a) was obtained by loading the fileboat.bmp . To obtain the reconstruc-
tion of the 64:1 JPEG compression shown in (b) we used the program IMAGE ANALYZER3. We opened the image file
boat.bmp with Image Analyzer and then selectedFile format optionsfrom theFile menu. Clicking on theJPEG
tab and entering4 kb for the compressed file size, we then saved the image as a*.jpg file. Loading that compressed
*.jpg file produced the reconstruction shown in (b). The image in (c) was produced in a similar way, except that the
JPEG 2000tab was clicked and we entered1.5625 for the % of compressed size, and theextra compression option
of mode=real was entered (that specifies that a Daub 9/7 transform is to be used). The image was then saved and
opened as a*.jp2 file. To obtain the image in (d) we used FAWAV . After loading theboat.bmp image, we selected
Save options (images)from the file menu and entered0.125 for the bpp rate. We then saved the image (right-clicking
on the image and selectingLoad/Save) as a*.wc2 file. Loading that saved*.wc2 file produced the image shown in (d).

Note: The PSNR values cited in the text were obtained by selectingAnalysis/Norm Differenceand then choosing
the optionPSNR. For example, to obtain the PSNR between image 2 (Gr 2) and image 3 (Gr 3), where image 2 is the
original being compared with, you would enter2 for theGraph 1number and3 for theGraph 2number, select option
PSNR, and click on theComputebutton. Unfortunately, FAWAV does not support the*.jp2 file format. Therefore, to
obtain PSNRs for*.jp2 reconstructions, you must first save a reconstructed (decompressed)*.jp2 image in a file format
that FAWAV can read (such as*.bmp).

3This program can be obtained as a free download from theSoftwarelink at the book’s website:www.uwec.walkerjs/Primer .



Examples and Exercises forA Primer on Wavelets:Chapter 4 20

4.2.1c
s Using FAWAV for the ASWDR compressions (format* .wc2 ) and IMAGE ANALYZER for the JPEG and J2K

compressions, find the PSNR values for 8:1, 16:1, and 32:1 compressions of theAirfield.bmp image.

4.2.2c Using FAWAV for the ASWDR compressions (format* .wc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:1 compressions of thegoldhill.bmp image.

4.2.3c Using FAWAV for the ASWDR compressions (format* .wc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:1 compressions of thepeppers.bmp image.

4.2.4c Using FAWAV for the ASWDR compressions (format* .wc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:1 compressions of thezelda.bmp image.

Section 4.3

Example 4.3.1 [Figure 4.6] To obtain the image in part (a) of Figure 4.6, we loaded the image

fingerprint 1.bmp

and then right-clicked on a point with coordinates(227, 158) within the image and selectedZoom. Images (b) to (d)
were obtained by reconstructing 20:1 compressions by the JPEG, J2K, and ASWDR methods, respectively and then
zooming around the same coordinates as for image (a).

Example 4.3.2 [Figure 4.7] To obtain the image in part (a) of Figure 4.7, we loaded the image

fingerprint 1.bmp

The image in (b) was obtained from reconstructing a 0.8 bpp ASWDR compression of the image in (a). To obtain
the images in (c) and (d) we zoomed around the coordinates(157, 233) for images (a) and (b), respectively.Note: If
PSNR is calculated for these zoomed images (by selectingAnalysis/Norm differenceand entering the graph numbers
for the zoomed images), we find that it is31.1 dB (which is lower than the PSNR for the full images, but stillabove the
rule-of-thumb value of30 dB).

4.3.1c Using FAWAV for the ASWDR compressions (format* .wc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:1 compressions of thefingerprint 1.bmp image.

4.3.2c In problem 4.3.1, find PSNRs for zoomed images around the coordinates(157, 233).

4.3.3c Repeat problem 4.3.1, but use the imagefingerprint_2.bmp .

4.3.4c Using the imagefingerprint_2.bmp , repeat problem 4.3.1, but for zoomed images around the coordi-
nates(157, 233).

Section 4.4

Example 4.4.1 [Figure 4.10] To produce Figure 4.10(a) you load the imageboat.pgm , selectTransform/Wavelet,
and then plot a 5-level Daub 9/7 wavelet transform of the image. You then selectGraph/Plot and plot the formula
abs(g2)>=64 whereg2 stands for the wavelet transform (graph number2). That produces the image shown in (a),
the significance map for threshold64. To produce the image in (d), the approximate image reconstructed for threshold
64, you plot the graphg2(abs(g2)>=64) and compute the5-level inverse Daub 9/7 wavelet transform of the image
produced by that plot. The images in (b), (e), (c), and (f) areproduced by obvious modifications of the methods just
described.

Example 4.4.2 [Table 4.4] To produce the PSNR values in theWDR (No AC)column for the BARBARA IMAGE

portion of the table, we used the program IMAGECOMPRESSORlocated in the main FAWAV directory. Using the
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choiceGet Imageon theFile menu of IMAGECOMPRESSORwe loaded the imageBarb.pgm and then performed
compressions and decompressions in the following way. After selectingCompress,to performWDR (No AC)we
selected the optionsBinary andWDR. We also selected a Daub 9/7 transform with5 levels and entered1 for the Bit
rate (bpp)value. By clicking theCompressbutton, we were then able to save to an 8:1 compressed file. By selecting
Decompressfrom the file menu, we then decompressed this file and then selectedError measuresto compute a PSNR
value between the original and reconstructed image. To get the 16:1 and 32:1 PSNR values, wedid not do further
compressions.Instead, we decompressed the1 bpp compressed file at0.5 bpp (for 16:1) and0.25 bpp (for 32:1). To
find the PSNR values forWDRwe proceeded as just described, except that we checked the option Arithmeticwhen
performing the1 bpp compression. ForASWDR (No AC),you selectASWDRandBinary. For ASWDR,you select
ASWDRandArithmetic.The PSNR values for the BOATS IMAGE and X-RAY IMAGE parts of the table were computed
by repeating all this work for the imagesBoat.pgm anddog_head.pgm respectively.

4.4.1s Find the quantized transform for the wavelet transform in Figure 4.8(b), when the threshold is2. Also find the
analog of the last stage, half-threshold, array shown in Figure 4.9(b) when the threshold is2.

4.4.2 Find the quantized transform for the wavelet transform in Figure 4.8(b), when the threshold is1. Why is the
half-threshold, last stage approximation unnecessary when the threshold is1?

4.4.3 For the2-level wavelet transform shown in Figure 2, find the quantized wavelet transforms for thresholds16, 8,
and4.

18

16

18

20

6 6

4 4

−10

−10 8

8

−3

5

5

−3

4 4 6 4

−6 −6 −6 −8

10 10 10 12

−4 −4 −12 −12

8

−9

−9

4

6

−9

−8

5

6

−10

−8

4

8

−10

−7

4

2

4

4 −1

−2

1

3

2

5

−2

−8

2

−4 −2

−4

6

Figure 2
2-level wavelet transform for Exercise 4.4.4.

4.4.4s Compute the wavelet difference reduction encoding (using symbols+,−, 0, 1) for the first pass (threshold16)
of the wavelet transform on the right of Figure 3, using the scan order on the left.

4.4.5 Compute the wavelet difference reduction encoding (using symbols+,−, 0, 1) for the Significance Pass and
Refinement Pass when the threshold is8 for the wavelet transform shown in Figure 3(b).

4.4.6 Produce figures like Figure 4.10 for the imageBarb.pgm .

4.4.7 Produce figures like Figure 4.10 for the imageAirfield.pgm .

4.4.8 Verify all entries in Table 4.4.

4.4.9 Add a new part to Table 4.4, labelled FINGERPRINT, by computing PSNR values for each of the three compres-
sion ratios using each of the four compression methods for the fingerprint 1.pgm image.

4.4.10 Add a new part to Table 4.4, labelled PEPPERS, by computing PSNR values for each of the three compression
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(b) Wavelet transform

Figure 3
Data for Exercise 4.4.5. (a)2-level scan order. (b)2-level wavelet transform.

ratios using each of the four compression methods for thepeppers.pgm image.

Section 4.5

Example 4.5.1 [Figure 4.11] To produce Figure 4.11(a), we performed a2-level Daub 9/7 wavelet transform of
theBoat.pgm image. We then zoomed in onv2 by right-clicking on the lower left corner of the wavelet transform
image and selectingZoom(and then clicking on theZoombutton). After that first zoom, we then right-clicked on
the lower right corner and zoomed once more. The resulting displayed image isv2. We then right-clicked on it and
selectedClip, which produced a clipped out image ofv2 only. In this new active window, we then graphed the function
(abs(g1)>=16) to produce an image where the white pixels are parent values significant at threshold16 (and the
black pixels are insignificant parents). We then selectGraph/Interpolate/Haarin order to produce a new image that
is twice as large in each dimension, and each of the pixels (white and black) gives rise to a2 by 2 child matrix of
either all1 values (if the parent pixel is white) or all0 values (if the parent pixel is black). This image displays the
locations (in white) of all child values inv1 whose parent values are significant at threshold16. To get an image of only
those children who are predicted to benewly significantat threshold16, we return to the first window containing the
wavelet transform of theBoat.pgm image and clip out thev1 subimage. This is done by right-clicking on the wavelet
transform image and selectingRestore full imagefrom the popup menu, then right-clicking on the lower-rightcorner
and zooming once, and then clipping out this zoomed subimage. In the resulting new window, we graph the function
(32 > abs(g1) >= 16) and then copy this image (right-click on it and selectCopy graphfrom the popup menu).
Returning to the window containing the child values inv1 with significant parents, we right-click on its image and select
Paste.Finally, we graphg1 g2 and that produces a black and white version of the image in (a)[to change it to the
gray and white image displayed in thePrimer, right-click on it and selectGraph style,and then select the optionGrey
(+/-) ]. To produce Figure 4.11(b) we return to the window with the clipping of v1 and plot(16>abs(g1)>= 8) to
produce a black and white image of the new significant values in v1 [which one can then convert to a gray and white
image identical to (b) as we did above for (a)].

To get the percentage of correct predictions of41.2% given in the caption of Figure 4.11, we proceed as follows.
First, open a new window by selectingFile/New 2-dim.Second, copy and paste the image for (a) into this new window,
then copy and paste the image for (b) into the window as well. SelectAnalysis/Statisticsand compute statistics for
graphs1 and2. The fraction of energy of graph1 divided by the energy of graph2 yields the required percentage.

For Figures (c) and (d), we did similar work. The only differences were that we performed a3-level transform, and
to clip h3 we zoomed twice in a row after right-clicking on the lower left corner of the wavelet transform, then once on
the upper right corner; while to cliph2 we zoomed once on the lower left corner, followed by once onceon the upper
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right corner.

Example 4.5.2 [Figure 4.12] The image used wasBarb.bmp and we applied a5-level Daub 9/7 transform for the
WDR and ASWDR methods and thereal mode for J2K. (See Example 4.4.2 for more details on using IMAGECOM-
PRESSORand IMAGE ANALYZER) for doing these compressions.) The decompressed images were all saved as.bmp
files for loading into the FAWAV program. Then each of these.bmp images, and the original.bmp image, were loaded
into a 2-dim form in FAWAV . We then zoomed in on the same pixel for each of the four graphs(near the tip of Barb’s
nose).

Example 4.5.3 [Figure 4.13] These images were generated in the same way as the last example, except we zoomed
on a different pixel.

Example 4.5.4 In Figure 4 we illustrate the progressive reconstruction property of ASWDR. To produce these images
you selectNew Image Processorfrom theFile menu of FAWAV . You then selectGet imagefrom theFile menu of the
Image Processorwindow. By loading the imageAirfield.pgm you get the original (uncompressed) image shown
in (a). You then selectCompressfrom the main menu, and selectDaub 9/7for the wavelet and enter1 for the Bit rate
(bpp). Click on theGo button to save the image in compressed form at1 bpp (8:1 compression). From that one file,
you can generate each of the decompressions in Figure 4. You selectDecompressfrom the main menu, and enter0.25
for the bit rate and then click on theGo button and select the compressed file for decompression. In that way, you
produce the image shown in (b). The images in (c) and (d) are generated by decompressing this same compressed file,
using bit rates of0.5 and1, respectively. Because we are only using one compressed file, this illustrates progressive
reconstruction.

(a) Original image (b) 0.25 bpp (32:1 compression)

(c) 0.5 bpp (16:1 compression) (d) 1.0 bpp (8:1 compression)

Figure 4
Illustration of Progressive Reconstruction. Each image in (b) to (d) was computed from a single compressed file (saved at1.0

bpp). First, (b) is reconstructed, then (c), then (d).
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Example 4.5.5 [Table 4.5] The data shown in Table 4.5 was generated in the following way. The percentages for
WINZIP were generated by using this program4 to create an archive of compressions ofBarb.pgm andBoat.pgm
anddog_head.bmp and reading off the compression percentages provided by WINZIP. To generate the values for
ASWDR we used IMAGECOMPRESSOR. By selectingGet imagefrom the file menu of IMAGECOMPRESSORwe
loaded in an image file. When we loaded an image, we first recorded its file size (obtained by right-clicking on it and
selectingProperties). We then selectedCompressfrom the IMAGECOMPRESSORmenu and entered9 for the bit rate
(that indicates lossless compression because the originalimage uses8 bpp), and we also made sure that the wavelet
was Daub 5/3 and that the optionsarithmeticfor Symbol encoding andASWDRfor Method were checked. Clicking on
theGo button, we saved the image in a compressed format. When decompressing we again noted the file size of the
compressed file before we selecting it for decompression. Using the uncompressed and compressed file sizes for each
image, we calculated the percentages shown in the ASWDR column of the table.

Example 4.5.6 [Figure 4.14] The decompressions were generated as follows. TheAirfield.pgm image was
opened using anImage Processorwindow in FAWAV . Then we compressed at 200:1 (0.04 bpp as bit rate) using a4-
level Daub 5/3 transform. After decompressing that compressed file we obtained the image in (b). To obtain the image
in (d) we right-clicked on the original image (on the left of the window) and drew a rectangle enclosing the image that
we want to have losslessly compressed [the airplane at lowerleft indicated in (c)]. We then compressed the image again.
Upon decompression, the selected region of the original image is reconstructed exactly (while some error remains in
the rest of the reconstructed image).

4.5.1c Produce images like the ones in Figure 4.11, but for theBarb.pgm image. Calculate the percentages of
correct predictors as well.

4.5.2c Produce images like the ones in Figure 4.11 for theBoat.pgm image, except this time show children ofh2 as
predictors of new significant values forh1, and children ofv3 as predictors of new significant values forv2. Calculate
the percentage of correct predictors as well.

4.5.3c Produce images like the ones in Figure 4.11, but for theBarb.pgm image. Calculate the percentages of
correct predictors as well.

4.5.4c Produce images like the ones in Figure 4.11, but in this case use theBarb.pgm image and show children
of h2 as predictors of new significant values forh1, and children ofv3 as predictors of new significant values forv2.
Calculate the percentage of correct predictors as well.

4.5.5c
s Create images like Figure 4 for theboat.pgm image.

4.5.6c Create images like Figure 4 for thepeppers.pgm image.

4.5.7c Create images like Figure 4 for thegoldhill.pgm image.

4.5.8c Add entries to Table 4.5 for thepeppers.pgm andzelda.pgm andairfield.pgm images. Which of
the images (now six in number) shows the least compression? Why do you think it compresses the least?

4.5.9c
s Produce images like in Figure 4.14, but this time select a region of interest that contains the swept-wing aircraft

just to the left of center. How much savings in file size do you get over sending a lossless compression of the entire
image?

4.5.10c Produce images like in Figure 4.14, but this time use thedog_head.bmp image and select a region of
interest that contains just the jaw region of the dog. How much savings in file size do you get over sending a lossless
compression of the entire image?

4WINZIP is available fromhttp://www.winzip.com/
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Section 4.6

In the following example and exercises for section 4.6, we consider therate-distortioncurves (R-D curves) for J2K.
An R-D curve is a graph of PSNR versus bit-rate for a given image: e.g., bit-rate in increments of0.1 bpp along the
horizontal and PSNR in dBs along the vertical.

Example 4.6.1 In Figure 5 we show the R-D curve for J2K for theGoldhill.bmp image, and for comparison the
R-D curve for ASWDR. To obtain the J2K compressions and PSNR values we used IMAGE ANALYZER in conjunction
with FAWAV . (See Example 4.2.3 and the Note that follows it.) To obtain the ASWDR compressions and PSNR values
we used IMAGECOMPRESSOR. (Note: We used7 levels of Daub 9/7 transform and selected theASWDRandArithmetic
coding options, and compressed to a1 bpp file, which we then decompressed at0.1, 0.2, . . . , 1.0 bpps, and selected
Error with PSNRoption to measure the PSNR for each decompression.)

PSNR (dB)

Rate (bpp)

J2K
ASWDR

Figure 5: Rate-Distortion curves for theGoldhill.bmp image.

4.6.1c Graph RD-curves for J2K and ASWDR using theAirfield.bmp image.

4.6.2c Graph RD-curves for J2K and ASWDR using theBarb.bmp image.

4.6.3c
s Graph RD-curves for J2K and ASWDR using theBoat.bmp image.

4.6.4c Graph RD-curves for J2K and ASWDR using theMountain.bmp image.

4.6.5c Graph RD-curves for J2K and ASWDR using thePeppers.bmp image.

Section 4.7

Example 4.7.1 [Figure 4.15] To create the image in (a), the imageBoat.bmp was loaded into FAWAV . The
noisy image in (b) was created as follows: random noise withσ = 20 was added to the image by plotting the
graph ofg1+20rang(0) and then the resulting image was converted to an 8 bpp gray-scale image by selecting
Graph/Quantize (8-bit). After deleting the second graph (the unquantized noisy image),we created the image in (c) by
first performing a5-level Daub 9/7 wavelet transform of the noisy image, and then plotting the function

g3(abs(g3)>= 20sqr(2log(512)))



Examples and Exercises forA Primer on Wavelets:Chapter 4 26

to produce a denoised transform.After deleting graph 3 (the noisy transform),we then performed an inverse5-level
Daub 9/7 transform on graph 3 to produce an (unquantized) denoised image. Finally, we deleted graph 3 (the denoised
transform) and selectedGraph/Quantize (8-bit)to create an 8 bpp gray-scale image. This final image is the base
threshold denoising shown in (c). To create the image in (d),we deleted the unquantized denoising (graph 3 in the
window), and then selectedGraph/Denoise (wavelet). By clicking thePlot button (with graph 2 and 5 levels and a
Daub 9/7 wavelet specified), we performed a TAWS denoising of the noisy image (which is automatically quantized to
an 8-bit gray-scale image), producing the image shown in (d). We also computed PSNR values for each of the images
in (b) to (d), in comparison to the original image in (a). We obtained the following results: (b)22.2 dB, (c)27.0 dB, (d)
29.6 dB; which show that, for this example, TAWS provides a2.6 dB improvement over the base threshold method.

Example 4.7.2 [Table 4.6] We describe how to obtain the results in the third row, for theBoatscase withσ = 8. The
other rows of the table are obtained in a similar way. First, we loaded the imageboat.bmp into FAWAV . We then added
noise withσ = 8 to the image by plotting the graphg1 + 8rang(0) and then quantizing to 8 bpp (as explained in
the previous example). We then deleted graph 2 (the unquantized, noisy image) and saved the noisy gray-scale image
to the file:

c:\fawave\images\noisy_boat_8.bmp

To obtain the Wiener denoising, using MATLAB , we executed the following three MATLAB commands:

I=imread(’c:\fawave\images\noisy_boat_8.bmp’);
J=wiener2(I);
imwrite(J,’c:\fawave\images\noisy_boat_8_wiener.png ’;

The last command saves the wiener2 denoised image to apng file (a simpler image format for MATLAB syntax) rather
than abmpfile. Loading the wiener2 denoised image into FAWAV , we then computed a PSNR value for it in comparison
to the original image. That gave the result shown in the tableunderWiener(your results might differ slightly due to the
random nature of the noise). To obtain the results underTAWSwe performed a TAWS denoising (as described in the
previous example) of the noisy image, and then computed a PSNR value of the TAWS denoising in comparison to the
original image (again, your results might vary slightly dueto randomness).

Remark As one can see from this last example, MATLAB is very simple to operate, but also very powerful. Unfor-
tunately, it alsovery expensive(especially if one has to also buy the IMAGE PROCESSINGand SIGNAL PROCESSING

toolkits which are needed for the examples described in thisbook). Because of MATLAB ’s cost, I decided to concentrate
on examples using FAWAV (which although less powerful than MATLAB , has the advantage of being free).

Example 4.7.3 [Figure 4.16] The images in the figure were produced using the method described in the previous
example (using theBarb.bmp image, andσ = 16). If, in addition, we zoom in on the upper right corner of all four
images, then we obtain the images shown in Figure 6.

Example 4.7.4 The TAWS denoising in Figure 6(d) suffers from some annoying noise residuals (which appear as
small pixel-size blemishes). An improved TAWS denoising option is available in FAWAV . It is called TAWS-SPIN and
is described in detail in a paper of the author’s,Tree-adapted wavelet shrinkage,which can be downloaded from

http://www.uwec.edu/walkerjs/media/TAWSsurv.pdf

Here we shall illustrate TAWS-SPIN. By selecting theDenoise (wavelet)option, and selecting a Daub 9/7 wavelet, you
then check the box labeledAvg.and select the2D option. That performs the TAWS-SPIN algorithm with the parameters
recommended in the paper. For instance, performing it on thenoisy Barbara image from the previous example, we obtain
the image shown in Figure 7(d). Compared to Figure 6(a), there is a slight improvement in PSNR and the pixel-size
blemishes are gone.

Example 4.7.5 In Figure 8 we compare TAWS-SPIN with the Wiener2 method for the Boat.bmp image contam-
inated withσ = 32 Gaussian random noise (the noisy image is at the FAWAV webpage asNoisy_boat_32.bmp ).
The TAWS-SPIN denoising shows a much higher PSNR than the Wiener2 image and is much less free of noise artifacts.
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(a) Original (b) Noisy imageσ = 16 (24.0 dB)

(c) wiener2 denoising (27.9 dB) (d) TAWS denoising (27.9 dB)

Figure 6
Zooms of two denoisings of Barbara image (PSNR values in parentheses).

Example 4.7.6 [Figure 4.18] We loaded the imageSTM_Si_111_a.bmp into FAWAV to produce the image in (a).
To denoise it, we performed a5-level Daub 9/7 transform and then plotted the following function

g2 (x<c)(y<c)
+ g2(abs(g2)<350)(1-(x<c)(y<c))(x<a)(y<a)
+ g2 (abs(g1)<t)(1-(x<a)(y<a))
\c = -.5+1/2ˆ5 \a=-.5+1/2ˆ4
\t =20

to process the transform. We then performed an inverse5-level Daub 9/7 transform on the processed transform to
produce the denoised image in (d). [The images in (b) and (c) were produced by zooming in on portions of the transform
of (a), after selectingGraph styleand choosing the optionsLinLog andGrey (+/-). For (b), we also entered20 for a
threshold.]

Example 4.7.7 [Figure 4.19] We loaded the imageSTM_Si_111_b.bmp into FAWAV to produce the image in (a).
To denoise it, we performed a5-level Daub 9/7 transform and then plotted the following function

g2 (x<c)(y<c) + g2 (abs(g2)<t)(1-(x<c)(y<c))
\c = -.5+1/2ˆ4
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(a) Original (b) Noisy imageσ = 16 (24.04 dB)

(c) wiener2 denoising (27.9 dB) (d) TAWS-SPIN denoising (28.0 dB)

Figure 7
Zooms of two denoisings of Barbara image (PSNR values in parentheses).

\t = 30

to process the transform. We then performed an inverse5-level Daub 9/7 transform on the processed transform to
produce the denoised image in (b).

4.7.1c Denoise the noisy imagesLena_16.bmp andLena_24.bmp andLena_32.bmp (noisy images withσ =
16, 24, 32, respectively) using TAWS, and TAWS-SPIN, and (if available)Wiener2. Which method appears best (both
objectively, in terms of PSNR, and subjectively, in terms ofhow it appears to you visually)?

4.7.2c Denoise the noisy imagesGoldhill_16.bmp andGoldhill_24.bmp andGoldhill_32.bmp (noisy
images withσ = 16, 24, 32, respectively) using TAWS, and TAWS-SPIN, and (if available)Wiener2. Which method
appears best (both objectively, in terms of PSNR, and subjectively, in terms of how it appears to you visually)?

4.7.3c Denoise the noisy imagesBoat_16.bmp andBoat_24.bmp andBoat_32.bmp (noisy images withσ =
16, 24, 32, respectively) using TAWS, and TAWS-SPIN, and (if available)Wiener2. Which method appears best (both
objectively, in terms of PSNR, and subjectively, in terms ofhow it appears to you visually)?

4.7.4c Denoise the noisy imagesPeppers_16.bmp andPeppers_24.bmp andPeppers_32.bmp (noisy im-
ages withσ = 16, 24, 32, respectively) using TAWS, and TAWS-SPIN, and (if available)Wiener2. Which method
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(a) Original (b) Noisy imageσ = 32 (18.2 dB)

(c) wiener2 denoising (25.0 dB) (d) TAWS-SPIN denoising (27.4 dB)

Figure 8
Two denoisings of Boats image (PSNR values in parentheses).

appears best (both objectively, in terms of PSNR, and subjectively, in terms of how it appears to you visually)?

4.7.5c
s The imageElaine.bmp has some noise (try zooming a few times on the center pixel to see it more clearly).

Denoise this image using TAWS, and TAWS-SPIN, and (if available) Wiener2. Which method appears best subjectively,
in terms of how it appears to you visually?

4.7.6c Try to improve the denoising of theSTM_Si_111_a.bmp image, obtaining a more sharply focused image
than the example given in the text (see Example 4.7.6).

4.7.7c Try to improve the denoising of theSTM_Si_111_b.bmp image, obtaining a more sharply focused image
than the example given in the text (see Example 4.7.7).

Section 4.8

Example 4.8.1 [Figure 4.20] To produce (a) we first graphed an octagon shaped figure by plotting the following
function

(y-x-c<=0)(x+y-c<=0)(x-y-c<=0)
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(x+y+c>=0)(abs(y)<=b)(abs(x)<=b)
\c=12/5\b=8.5/5

over the region[−4, 4] × [−4, 4] using128 as the choice forPoints. We then computed a1-level Coif6 transform and
plotted

10g2(1-(x<0)(y<0))

After changing the display style of the resulting graph toLogand setting a threshold of0.1 we obtained the image shown
in (a). To obtain the image in (b) we then performed an inverse1-level Coif6 transform on image (a) and changed its
graph style toGrey (+/-).

Example 4.8.2 [Figure 4.21] To obtain the images in (a) and (b) we first loaded the imagehouse.pgm and that
gave us (a). We then performed a1-level Daub4 transform on this image and plotted the function

g2+2g2(1-(x<0)(y<0))

to obtain a processed transform. We then performed an inverse 1-level Daub4 transform of this processed transform.
By quantizing to get an8-bit gray-scale image, we obtained the image (b).

Example 4.8.3 [Figure 4.22] The image in (a) was obtained by successively loading the imagesgoldhill.pgm
andboat.pgm andairfield.pgm andpeppers.pgm into a 2-dim form. The image in (b) were obtained by
performing2-level Coif18 transforms of these images, copying and pasting them into a single2-dim form, and changing
their graph styles toLin-Log128 and choosing a threshold of4.

Example 4.8.4 [Table 4.7] We explain how the entries for the column labeledSecondwere obtained (the entries for
the other columns were obtained in a similar way). First we obtained the denoised image of the noisy boats image (see
Example 4.7.1). We copied and pasted this denoised image into a new2-dim form. We then produced a2-level Coif18
transform of this denoised image, and displayed it with the same graph style as the images in Figure 4.21(b) discussed
in Example 4.8.2. The next step is to compute the relative2-norm differences between the trend subimages. To do that
for the Gr 1 entry (corresponding to the Goldhill image) we zoomed in on the lower left corner of the Coif18 transform
of the Goldhill image, so that just the trend subimage was displayed. We then clipped this subimage to obtain a new
2-dim form containing a display of just the trend subimage. and repeated this process with the denoised Boats image
transform. We then copied the trend subimage from the Goldhill image and pasted it into the form containing the trend
subimage from the denoised Boats image. Finally, we computed a2-norm difference between graphs 1 and 2, with the
optionRelativeselected. That gave us the value0.455 shown in the table. We then repeated this process with the other
images to get the remaining entries.Note:The values you obtain may differ slightly from the ones reported in Table 4.7
due to the random nature of the additive noise.

4.8.1c Produce an image of the edges ofPeppers.bmp .

4.8.2c
s Edge enhance the imagecathedra.pgm .

4.8.3c Edge enhance the imagePeppers.bmp .

4.8.4c Add additional data to Table 4.7, using the imageElaine.pgm .

4.8.5c Add additional data to Table 4.7, using the imageZelda.pgm .

4.8.6c
s Construct a table analogous to Table 4.7, using a 32:1 compression ofLena.pgmin comparison to the four

images:Barb.bmp , Zelda.bmp , Lena.pgm , andPeppers.bmp .
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Chapter 5

Section 5.1

Example 5.1.1 [Figure 5.1] To create (a) we usedGraph/Plotand plotted

2cos(4pi x) + 0.5sin(24pi x)

over the interval[−16, 16]. For (b) we then selectedTransform/Fourierand pressed thePlot button. For (c) we opened
a new 1-D form, and plotted the function

(1 + cos(24 pi x))/(1 + 4xˆ2)

over the interval[−16, 16], after which we obtained (d) by the method used to get (b).

Example 5.1.2 [Figure 5.2] To get (a) we plotteddel(x) over the interval[0, 1024] using1024 points. We then
computed a1-level Coif12 inverse wavelet transform. That produced a plot of the scaling signalV1

1. We then chose
Transform/Fourierand selected the optionsPower sp.and[0, L] → [−A,A], and unchecked the box labelledPeriodic,
endpoint averaged,to plot the spectrum ofV1

8. For (b) we did the same work, except we first plotteddel(x-512) .

Example 5.1.3 We show in Figure 9 the graphs of the spectra of the Coif12 scaling signalV1
17 and waveletW1

17.
These spectra were produced as in Example 5.1.2, usingdel(x-16) anddel(x-512-16) . Notice how they match
the spectra ofV1

1 andW1
1 shown in Figure 5.2 in the Primer.
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Figure 9
(a) Spectrum of Coif12 scaling signalV1

17. (b) Spectrum of Coif12 waveletW1

17.

5.1.1c
s Produce a graph of

3 sin(8πx) − 2 cos(16πx)

over the interval[−16, 16] using1024, and then produce a plot that displays the frequency contentof this function.

5.1.2c Produce a graph of
2 cos(12πx) + 8 sin(24πx)

over the interval[−16, 16] using1024, and then produce a plot that displays the frequency contentof this function.

5.1.3c
s Plot spectra of the Coif12 scaling signalV1

20 and waveletW1
20.

5.1.4c Plot spectra of the Coif18 scaling signalV1
20 and waveletW1

20.

5.1.5c Plot spectra of the Daub12 scaling signalV1
20 and waveletW1

20.

5.1.6c Plot spectra of the Haar scaling signalV1
20 and waveletW1

20.
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Section 5.2

5.2.1s Prove the linearity property of the DFT.

5.2.2s Prove the periodicity property of the DFT.

5.2.3s Prove the inversion property of the DFT.

5.2.4 Prove Parseval’s Equality for the DFT.

5.2.5s Find thez-transform off = (1, 1, 1, 1). What are its roots?

5.2.6 Find thez-transform off = (1, 0, 1, 0, 1, 0, 1, 0). What are its roots?

5.2.7 Prove thatTk ◦ Tm = Tk+m. Also prove thatT−k = T −1
k .

Section 5.3

Example 5.3.1 [Figure 5.3] To produce the graph in (a) we first plotted

(1 + cos(24 pi x))/(1 + 4xˆ2)

over the interval[−16, 16] using 1024 points. We then selectedSeries/Waveletand chose a1-level Coif12 wavelet with
optionAscending termsand entered512 for the number of terms. Plotting that series produced the graph shown in (a).
To produce the graph in (b) we performed a Fourier transform of the graph in (a). We obtained the graph in (c) by
subtracting the graph in (a) from the original function’s graph. The graph in (d) is the Fourier transform of the graph in
(c).

Example 5.3.2 [Figure 5.4] To obtain the graphs in (a) we computed power spectra of scaling signalsVk
1 and

multiplied each power spectrum by2−k for k = 1 to k = 4. For example, to plotV3
1 we grapheddel(x) over

[0, 1024] using1024 points, and then computed a3-level inverse Coif12 transform. Plotting the Power spectrum and
multiplying by 2−3 produced the 3rd graph from the top in (a). Similar work was done to produce the graphs in (b)
except that waveletsWk

1 were used. For instance, to plot the graph ofW3
1 we plotteddel(x-128) over [0, 1024]

using1024 points and then computed an inverse3-level Coif12 transform.

5.3.1c
s In Figure 10(a) we show the graph of the function

1 + cos(16πx)

1 + 4x2
+

1 + sin(24πx)

1 + 4(x − 8)2
+

1 − cos(8πx)

1 + 4(x + 8)2

over the interval[−16, 16] using1024 points, and in (b) we show the graph of its DFT. Reproduce these graphs and
identify the portions of the DFT graph that correspond to transforms of the3-level Coif12 averaged signalA3, and
detail signalsD3, D2, D1.

5.3.2c Graph the function
4∑

k=1

1 + 4 cos(2π3 · 2k−1x)

1 + 4(x − (−40 + 16k))2

over the interval[−32, 32] using4096 points, and plot its DFT. For a Coif12 wavelet, identify which portions of the
DFT correspond to transforms of the signalsA4, D4, D3, D2, D1.

5.3.3 Prove formula (5.29).
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Figure 10
(a) Graph of function from Exercise 5.3.1. (b) DFT of that function.

Section 5.4

Example 5.4.1 [Figure 5.5] The graph of the top signal was obtained by plotting

sumk(100u(u-.1)(u+.2)(-.2<u<.1)(abs(k-1)>.5))
+.1sin(12pi v)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x-2

over the interval[−5, 5] using1024 points. The middle signal was obtained by then plotting

100u(u-.1)(u+.2)(-.2<u<.1) \u=x

over the same interval with the same number of points. To obtain the bottom graph we selectedConvolveandPair Cor-
relation, and entered2 for Graph 1and1 for Graph 2with theNormalizeoption selected, and after plotting this nor-
malized correlation, we then plotted the graph ofg3(x)(g3(x)>.9) to show those correlation values that exceeded
0.9.

5.4.1c Compute a graph showing the values of the normalized correlation of the following two graphs, over the
interval[−5, 5] using1024 points:

g : 2(−3 < x < −2) + (1 − abs(x))(abs(x) < 1) − 1(3 < x < 4)

f : 2(−.5 < x < .5)

Explain why the position of the maximum of1 for the normalized correlation occurs where it does, and whythe
minimum of−1 occurs where it does.

5.4.2c Compute a graph showing the values that exceed0.90 of the normalized correlation of the following two
graphs, over the interval[−5, 5] using1024 points:

g : sumk(100u(u − .1)(u + .2)(−.2 < u < .1)(abs(k − 1) > .5)) + .1 cos(14πv)(−.2 < v < .1)

\u = x − 2k\k = −2, 2\v = x − 2

f : 100u(u − .1)(u + .2)(−.2 < u < .1)\u = x
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Section 5.5

Example 5.5.1 [Figure 5.6] To produce this figure you first load the imageP.bmp and then the imagePQW.bmp
and that displays Gr 1 and Gr 2. To produce Gr 3 you selectConvolveandPair correlationand check the box entitled
Normalize.You also enter1 for Graph 1, and1 for Graph 2. After plotting the normalized correlation as the third graph
and then plotting(g3 > .9) you obtain the tiny white pixel at the center shown in Gr 3 in the figure. To obtain the
image in Gr 4 you proceed in a similar way, except you enter1 for Graph 1 and2 for Graph 2 when computing the
normalized correlation.

Example 5.5.2 [Figure 5.7] To obtain the graphs in (a) you load successively the imagesElaine_face.bmp ,
boat.bmp , Elaine.bmp andZelda.bmp . To obtain the images in (b) you perform normalized correlations with
Elaine_face.bmp as Graph 1, and each of the images in (a) as Graph 2, and you alsoplot the values exceeding0.9
for each of these normalized correlations.

Example 5.5.3 [Figure 5.8] To obtain the graphs in (a) you proceed as follows. Perform a1-level Coif12 transform
of Elaine_face.bmp , then graphg2(1-(x<0)(y<0)) and then inverse transform on Gr 3 to getD1. You then
plot

g4((xˆ2 + yˆ2) < cˆ2) \c = 0.15

to remove extraneous edges at the boundary of the disc containing edges of Elaine’s face. Then repeat this work
(without the boundary removal step) for each of the imagesboat.bmp , Elaine.bmp , andZelda.bmp , copying
and pasting theD1 images into the form containing the face version ofD1, and computing normalized correlations with
thresholding at0.9.

5.5.1c Do a normalized correlation, and retain only values exceeding 0.9, for the image2DCorr_a.bmp of the
lettera within the portion of text in the image2DCorr_text.bmp . Verify that all instances of the lettera and their
positions are detected correctly.

5.5.2c Do a normalized correlation, and retain only values exceeding0.9, for the image2DCorr_u.bmp of the letter
u within the portion of text in the image2DCorr_text.bmp . Verify that all instances of the letteru of the same size
and their positions are detected correctly.Note: Some larger size versions ofu are not detected. This provides evidence
that our brains use much more sophisticated methods of pattern matching, valid across a range of sizes, not just a single
fixed size.

5.5.3s In the previous two exercises, the text and the individual letters were white on a black background. Explain
how to handle letter detection if the text and letter are bothblack on a white background. Do you see any relation to this
problem and vision?

5.5.4c Apply the edge correlation method to detecting the presenceof Barb_face within the imageBarb.bmp
and its lack of presence within the imagesZelda.bmp andElaine.bmp .

5.5.5c Repeat the previous exercise, but use edge correlations based on the3rd level Coif12 trends for the images.

Section 5.6

5.6.1 Show that forP (θ) = eiπ cos πθ, we obtain the Haar scaling numbersα1 = α2 = 1/
√

2 and wavelet numbers
β1 = 1/

√
2, β2 = −1/

√
2.

5.6.2 Show that (5.67) implies (5.68).

5.6.3s Use the method of this section to derive the Daub6 scaling numbers and wavelet numbers.

5.6.4 Generalize the method of this section to the biorthogonal case.
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Section 5.7

Example 5.7.1 [Figure 5.9] To produce (a) we plotted the function

e−400(t−0.2)2 sin 1024πt + e−400(t−0.5)2 cos 2048πt

+ e−400(t−0.7)2(sin 512πt − cos 3072πt)

over the interval[0, 1] using 8192 points. The DFT in (b) was then produced by choosingTransform/Fourierand
selecting[0,L]->[-A,A] for Interval Type.To produce (c) we selectedAnalysis/Spectrograph,from the window
containing the graph in (a), and when the spectrogram windowopened we then plotted the spectrogram withBlackman
specified as the filter.5 We produced (d) by selectingNonefor the filter in the spectrogram (this specifies a Boxcar
window).

Example 5.7.2 [Figure 5.10] The graph in (a) was created by opening a new 1D-form and then right-clicking on the
graph region followed by selection ofLoad/Sound file.We then selected the sound fileflute_clip.wav . The graph
in (b) was created by plotting several shifts of the Blackmanwindow defined in the Primer, and (c) was obtained by
multiplying the signal in (a) by the central window displayed in (b).

Example 5.7.3 [Figure 5.11] This figure was obtained by plotting the formulas for the Hanning and Blackman
window functions, usingλ = 1, over the interval[−0.5, 0.5] using1024 points.

5.7.1c
s Plot the following function

e−400(t−0.2)2 sin 2048πt + e−400(t−0.5)2 cos 512πt

+ e−400(t−0.7)2(sin 1024πt − cos 3072πt)

over the interval[0, 1] using8192 points and then compute its Hanning and Blackman windowed spectrograms. Do you
observe any differences?

5.7.2c Plot the following function

e−400(t−0.2)2 sin 512πt + e−400(t−0.5)2 cos 2048πt

+ e−400(t−0.7)2(sin 512πt + 0.5 cos 1024πt − cos 3072πt)

over the interval[0, 1] using8192 points and then compute its Hanning and Blackman windowed spectrograms.

5.7.3c Load the signalgreasy.wav and compute its Blackman windowed spectrogram.

5.7.4c Load the signalChong’s ’Bait’.wav and compute its Blackman windowed spectrogram.

Section 5.8

Example 5.8.1 [Figure 5.12] The spectrogram in (a) was generated by loading the sound filepiano_clip.wav
and then computing a Blackman windowed spectrogram. For (b)we plotted the formulasin[8192(pi/3)xˆ3]
over the interval[0, 1] using8192 points and then computed a Blackman windowed spectrogram.

Example 5.8.2 [Figure 5.13] The spectrum in (a) was computed in the following way. In thespectrogramwindow
containing the Blackman windowed spectrogram of the piano notes (see last example), we selectedView and then
choseView cursor coordinates.We then moved the mouse cursor over the spectrogram until thetip of the mouse cursor
displayed0.6 as its first coordinate, and then right-clicked and choseVertical slicefrom the popup menu. That produced
the real and imaginary parts of the FFT corresponding to the vertical slice alongt = 0.6 in the spectrogram. To get the
spectrum’s plot, we graphed the function

5A time-domain filter is usually called awindow;we used the termwindowin the Primer.
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sqr(g1(x)ˆ2 + g2(x)ˆ2)

and then clipped out graph 3, and changed the display style toLineswith the X andY ranges shown in the figure.
To produce (b) we used the same steps, except that we right-clicked on the spectrogram when the first coordinate was
1.115.

Example 5.8.2 [Figure 5.14] The spectrogram in this figure was created by juxtaposing twospectrograms. We began
by loading the sound filefirebird_clip2.wav , which loaded into anAudio editorwindow. We then left-clicked
at about a quarter of the way from the left end of the signal (atabout54000 for theLine 1reading) to create a beginning
clip-line, followed by a click toward the middle of the signal to create a right-click line. We then right-clicked on the
selected region and choseClip. By clicking on theAnalyzebutton we opened the clipped signal within a new 1D-form
and then computed a Blackman windowed spectrogram. This spectrogram is the left half of the spectrogram shown in
the figure. To produce the right half, we right-clicked on theright clip line and selectedMove clip region.The clipped
signal shown in the small box on the right of theAudio editoris automatically updated with this new clipping. We then
clicked theAnalyzebutton and created a Blackman windowed spectrogram, which is the right half of the spectrogram
shown in the figure.

Example 5.8.3 [Figure 5.15] To create the spectrogram in (a) we loaded the sound file

Chinese_folk_Music.wav

and computed a Blackman windowed spectrogram. The zooming in shown in (b) was computed in the following way
(the explanation of the mathematics underlying the following procedures is discussed in sections 6.3 and 6.4 of the
Primer). From the menu for the original sound signal we selected Analysisand choseScalogram.In the scalogram
window that opens, we chose to compute aGabor (complex)scalogram, using the following settings:

Octaves: 2 Voices: 128

Width: 0.25 Freq.: 125

and then clicked on thePlot button to compute the scalogram. Once the scalogram was plotted, we then selected
View/Display styleand selectedLog (global)for theMagnitudesetting.

Example 5.8.4 [Figure 5.16] These spectrograms were created by loading the sound filesosprey_song.wav and
oriole_song.wav and computing Blackman windowed spectrograms.

5.8.1c Analyze the oriole’s song from the recordingoriole_song.wav .

5.8.2c
s Use AUDACITY to create a spectrogram of the passage from the classical Chinese folk song recorded in the

file Happiness_clip.wav , and use the Multiresolution Principle to analyze its musical qualities. Details on how
to use AUDACITY can be obtained by selecting the link

Document on usingFAWAVand Audacity

available at the following website

http://www.uwec.edu/walkerjs/tfam/

5.8.3c Analyze the passage from the songBuenos Airesin the recordingBA_passage.wav .

Section 5.9

Example 5.9.1 [Figure 5.16] To create (a) we loaded the sound fileoriole_whistle.wav and performed a
Blackman windowed spectrogram. We create (b) by selectingGraph/Plot from the spectrogram window where (a) is
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displayed, and then clicking on theLoadbutton to load the formula filesynthetic_oriole_whistle.uf2 , and
then plotting this formula. (The sound signal corresponding to this spectrogram is generated by selectingGraph/Inverse.
It should be played at the same sampling rate and bit-rate as the oriole whistle.) For (c), you selectGraph/Restorefrom
the spectrogram menu, then proceed as for (b) except that youplot the formula from the file:

a_synthetic_bird_song.uf2

5.9.1c Model the spectrogram ofhouse_wren_chirp.wav and compute a synthesized mimic of this bird call.

5.9.2c
s Compute a spectrogram of the recorded soundwarbler.wav . Analyze this spectrogram for its musical

qualities using the principles discussed in the previous section.

5.9.3c Model the spectrogram ofwarbler.wav and compute a synthesized mimic of this bird song.

5.9.4c
s Selectively amplify the harp glissando in the signaloriginal clip from Firebird Suite.wav .

5.9.5c Using the Multiresolution Principle, synthesize your own bird song and/or musical passage.

Section 5.10

Example 5.10.1 [Figure 5.18] To perform the denoising illustrated in the figure we proceeded as follows. First, we
graphed the following multiple of the chirp formula given inthe text:

c sin(8192 (pi/3)xˆ3) \c = 7/.695750610959927

over the interval[0, 1] using 8192 points. The constantc is chosen so that the standard deviation of the values of
this signal is7 (that is the standard deviation set by Donoho for the test signals he created, which are widely used
in benchmarking denoising algorithms). After graphing this chirp signal, we then added Gaussian random noise of
standard deviationσ = 1 to it by plotting the formula

c sin(8192 (pi/3)xˆ3) + rang(0)
\c = 7/.695750610959927

The MSE for the noisy chirp compared to the original chirp is then calculated by choosingNorm differenceand selecting
the Power normoption with power2. That gives the Root Mean Square (RMS) error, the MSE is the square of that
RMS value.

The Blackman windowed spectrogram in (a) was then created from this noisy chirp signal. Its thresholded spectro-
gram in (b) was created by choosingGraph/Denoisefrom the spectrogram menu and plotting the formula that FAWAV
automatically supplies. [The theory that explains how thatdenoising formula is created is discussed in the paperDe-
noising Gabor transforms(reference [9] in Chapter 5 of the Primer).] To get the MSE error for denoising, you then
selectGraph/Invertfrom the spectrogram menu and copy and paste the resulting signal in to the window containing the
original chirp signal, and square the RMS error (computed between graphs 1 and 3).

Example 5.10.2 [Figure 5.19] To create the graph shown in (a) you plot the formulabumps.uf1 , available from
theExercise_formulas.zip archive from the Primer webpage. The plotting is done over the interval[0, 1] using
8192 points. You then calculate that signal’s standard deviation (which my computer gave as1.53952824076645) and
plot the following signal

7g1(x)/c \c = 1.53952824076645

After removing graph 1 (right-click on the graph region and selectRemove graphand specify graph 1 for removal), you
are left with the plot of Donoho’s test functionBumpsshown in (a). The noisy signal in (b) is plotted as in the previous
example (usingg1(x)+rang(0) ). The denoising in (c) is obtained by selectingGraph and thenDenoise (Gabor)
and specifying graph2. A spectrogram window opens up with a formula for plotting the thresholded spectrogram
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(it is not automatically computed because you are able to modify the formula for more advanced denoising such as
garotte shrinkage, see Example 5.10.4 below). After plotting the thresholded spectrogram and selectingGraph/Invert
you obtain the denoised signal shown in (c). The MSEs were computed as described in the previous example.

Example 5.10.3 [Figure 5.20] To produce the spectrograms in Figure 5.20 you load the soundfile

oriole_song.wav

and compute its Blackman windowed Gabor transform to get (a), and then selectGraph/Denoiseto plot the thresholded
spectrogram (b). As in previous examples, the denoised signal was produced by then selectingGraph/Invert. We then
saved this signal asoriole_song_denoised.wav by right-clicking on it and selectingSave/Sound file.

Example 5.10.4 [Figure 5.21] To obtain the spectrogram in (a) you load the audio filenoisy_thrush.wav and
plot a Blackman windowed spectrogram. If you selectGraph/Denoisethen the automatically generated formula for
thresholding is

(g1)(g1 > c)
\c=.55 * sqr(2log(1024)) * (187.910060820749) * sqr(1024)

If you plot this formula and then selectGraph/Invertyou will produce a denoising that suffers from high-pitchedartifacts
and low-pitch rumbling and thumping. The garotte shrinkageshown in (b) is performed by selectingGraph/Restore,
followed byGraph/Denoise, and then modifying the automatically generated function to obtain the following formula:

(g1)(g1 > c)(1-(c/g1)ˆ2)
\c=.55 * sqr(2log(1024)) * (187.910060820749) * sqr(1024)

Plotting this formula produces (b). If you then selectGraph/Invertyou will create a sound signal that no longer suffers
from high-pitched artifacts, but still has low-pitch rumbling and thumping. These latter noises are removed by a high-
pass filtering, illustrated in (c). To obtain the spectrogram in (c), you selectGraph/Restorefrom the spectrogram’s
menu, followed byGraph/Denoise. You then modify the automatically generated formula to obtain:

(g1)(g1 > c)(1-(c/g1)ˆ2)(y > 1300)
\c=.55 * sqr(2log(1024)) * (187.910060820749) * sqr(1024)

Plotting this formula produces (c). If you then selectGraph/Invertyou will create a sound signal that is relatively
noise-free, no longer suffering from either high-pitched artifacts or low-pitch rumbling and thumping.

Example 5.10.5 In this example we consider a challenging denoising of a realaudio signal. The noisy recording is
the audio file:

Chinese_Folk_Music.wav

We show its Blackman windowed spectrogram in Figure 11(a). Its thresholded spectrogram, is graphed by plotting the
following function (obtained by selectingGraph/Denoisefrom the spectrogram menu):

(g1)(g1 > c)
\c=.55 * sqr(2log(1024)) * (355.195793541264) * sqr(1024)

See Figure 11(b). All of the noise has been removed. Unfortunately, however, some signal values are lost (especially in
the higher frequencies). When the denoised signal obtained from the thresholded Gabor transform is played it sounds
“muddy” due to loss of some of the high frequency content of the music.

To fix this problem, which is due to the rather high estimate ofthe standard deviation (σ ≈ 355), we need a different
estimate of the standard deviation. We find this new estimateas follows. By examining the spectrogram in Figure 11(a)
we see that there is a region of the time-frequency plane, shown in Figure 11(c), that is mostly noise. To obtain the plot
in Figure 11(c) we used the following function:

g1(5.302<x<5.746)(2680<y<3263)
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(a) (b)

(c) (d)

Figure 11
Denoising Chinese folk music. (a) Noisy signal spectrogram. (b) Spectrogram of thresholded Gabor transform. (c) Small
region of just noise from (a). (d) Garrote shrinkage applied to Gabor transform for (a) with a new standard deviation.

After performing an inverse Gabor transform, we then changed theX-range to5.302, 5.746 and calculated the standard
deviation of the noisy signal. We got a new estimate of the standard deviation:σ ≈ 93. Returning to the spectrogram
window and restoring the noisy spectrogram of the full signal, we then plotted the following garotte shrinkage

(g1)(g1 > c)(1-(c/g1)ˆ2)
\c=.55 * sqr(2log(1024)) * (93) * sqr(1024)

which makes use of this new standard deviation. The resulting plot is shown in Figure 11(d). Although this spectrogram
appears noisy, when it is inverted the resulting denoised signal sounds noise-free, and more sharply defined due to better
preservation of the high-frequency content of the music. Wehave saved this denoised audio file as

denoised_Chinese_music_garotte.wav

5.10.1c Denoise the noisy recordingChinese_Folk_Song_Clip_b.wav .

5.10.2c Denoise the noisy recordingDan’s ’Bait’.wav .

5.10.3c Denoise the noisy recordingbobolink.wav . [Note: garotte shrinkage will produce aRun errordue to
division by0 in (g1>c)(1-(c/g1)ˆ2) . Use the modified expression(g1>c)(1-(c/(g1+(g1<c/2))ˆ2) to
avoid division by0.]
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Chapter 6

Section 6.1

Example 6.1.1 In this example we find the2-level Walsh transform of the the signalf = (−2,−4, 2, 6, 8, 4, 4, 2).
First, a1-level Haar transform is computed:

(a1 |d1) = (−3
√
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Then we compute1-level Haar transforms of botha1 andd1, obtaining

(1, 9 | − 7, 3 | − 1, 3 | 3, 1)

which is the2-level Walsh transform off .

Example 6.1.2 [Other wavelet packet transforms] Wavelet packet transforms in general are defined as signals that
result at the end nodes of a tree-diagram describing applications of a trend calculationT and a fluctuation calculationF.
For example, consider the following tree diagram (where thesymbol• indicates an end node signal):
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which can also be expressed more succinctly as

(TTT(f) |FTT(f) |FT(f) |TTF(f) |FTF(f) |FF(f)) .

For instance, iff = (−2,−4, 2, 6, 8, 4, 4, 6) then this wavelet packet transform is computed as follows (with the end-
node signals given in bold-face):
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and we can write this wavelet packet transformed signal as:

(5
√

2 | − 4
√

2 | − 7, 3 |
√

2 | − 2
√

2 | 3, 1).

Example 6.1.3 In this example we show how to use FAWAV to compute a wavelet packet series of the kind described
in the text, where each subsignal is transformed at every level, for a Coif30 wavelet. Suppose that our signal is obtained
from plotting the formula

40 sin(12πx2)

over the interval[0, 4] using4096 points. To compute a6-level Coif30 wavelet packet series, transforming each subsig-
nal at every level, we selectSeriesandWavelet Packetand then specify6 levels and a Coif30 wavelet. If we also select
Energy fractionand specify0.9999, then FAWAV uses250 transform values (which it reports as “250 coefficients”) to
obtain a wavelet packet approximation of the signal that captures99.99% of the signal’s energy. To see the advantage
for this signal of computing a wavelet packet series, if we compute a6-level Coif30 wavelet series with energy fraction
0.9999, then FAWAV uses397 transform values, a far greater number.

6.1.1s Givenf = (2, 4, 8, 6, 2, 4, 6, 8), find its2-level Walsh transform.

6.1.2 Givenf = (10, 8, 4,−2, 4, 8, 10, 18), find its3-level Walsh transform.

6.1.3c
s Given the signal obtained by plotting

sin(24πx2) − sin(12πx2)

over [0, 2] using4096 points. How many transform values (coefficients) are neededin a 6-level Coif30 wavelet packet
series to capture99.99% of the signal’s energy? How many for a Coif30 wavelet series?

6.1.4c Given the signal obtained by plotting

sin[24π(2 − x)2] + 4 sin(12πx2)

over [0, 2] using4096 points. How many transform values (coefficients) are neededin a 6-level Coif30 wavelet packet
series to capture99.99% of the signal’s energy? How many for a Coif30 wavelet series?

6.1.5 Given the signal
f = (2, 4, 6, 8, 16, 20, 22, 22).

Compute its wavelet packet transform defined by

(TT(f),TFT(f),FFT(f),TF(f),TFF(f),FFF(f))

and draw the tree diagram corresponding to this transform.

6.1.6 Given the signal
f = (2, 0, 4, 4, 4, 2, 4, 6, 8, 12, 12, 10, 8, 8, 8, 6).

Compute its wavelet packet transform defined by the following transforms applied tof

TTT,TFTT,FFTT,FT,TTF,TFTF,FFTF,TFF,FFF

and draw the tree diagram corresponding to this wavelet packet transform.
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Section 6.2

Example 6.2.1 [Table 6.1] The values in the first row were obtained as follows. We began by loading the sound
file greasy.wav and then selectedSeries/Wavelet. After specifying4 levels, and a Coif18 wavelet, and choosing the
Thresholdoption, we then clicked on theEdit Settingsbutton. In the edit window that opens we selected theMultiple
Thresholdsoption and entered1/2ˆ7:1/2ˆ5 for the thresholds. After clickingApply we then plotted the wavelet
series. The entriesSig. valuesandBpp were then read off from the report of the number of coefficients and the bits
per point, respectively. The RMS error was obtained from selectingAnalysis/Norm differenceand using the default
choices (Normalized, absolute Power 2 norm). Similar work was done to get the second row’s values, except that we
used the choiceSeries/Wavelet packet.Note: your results may differ slightly from ours due to differences in floating
point arithmetic for various CPUs.

Example 6.2.2 [Table 6.2] To obtain the data in the first row of the table, we loaded the imageBarb.bmp and
performed a4-level Daub 9/7 wavelet transform. We then right-clicked onthe transform image and selectedSave
graph/Graph.We then saved our transform data to a fileBarb_4_tr.fb2 in the Data subdirectory of the FAWAV
directory. After that, we selectedImage compression workshopfrom theGraphmenu, and proceeded as follows (Note:
we go through this procedure of usingImage compression workshopfor consistency, since it is the only way that FAWAV
has for performing wavelet packet compression.). Within the Image compression workshopwindow we specified4 for
the number of levels, and0.5 for the target bpp rate, and then clicked the button labelledEncode Transformand selected
the file Barb_4_tr.fb2 for encoding. TheSig. valuesentry was then read off from the report generated by the
encoding process when it completed its encoding at the rate of almost exactly the target rate of0.5 bpp. We then clicked
on the buttonDecode Transformand selected the fileBarb_4_tr.wic from theCompress/Datasubdirectory of the
FAWAV directory. (Note: when selecting this file, you might first right-click on it and check itsPropertiesto verify
that it has a file size of16 kB, which is a 16:1 compression of the256 kB file Barb.bmp .) The decoded transform
was saved to the fileBarb_4_tr_quant.fb2 in theCompress/Datasubdirectory. Finally, we returned to the 2D-
form containing the images and right-clicked on one of the images, followed by selectingLoad/Graphand loaded
the file Barb_4_tr_quant.fb2 . After inverse transforming this image, and 8-bit quantizing the resulting image
[by deleting one of the transform images, and then usingGraph/Quantize (8-bit)], we had our decompressed image.
We obtained the PSNR by selectingAnalysis/Norm differenceand choosing thePSNRoption. The second row of the
table was obtained by repeating this work, but using a wavelet packet transform and its inverse. The third and fourth
rows were obtained in the same way as the first and second rows,except that0.25 bpp was used as the target rate for
compression.

Example 6.2.3 [Figure 6.1] The images in the Figure were obtained during the process of creating the decompres-
sions of the 16:1 compressions ofBarb.bmp described in the previous example, and zooming in twice on a region
around the fold in Barb’s scarf (using the same center pixel values for each zooming). The PSNRs computed by FAWAV
are obtained just for the region selected in the zooms (usingthe first specified graph to determine the zoomed region, so
be sure that you have zoomed on exactly the same pixel coordinates for each image).

Example 6.2.4 [Figure 6.2] The image in (a) was created by performing a2-level Daub 9/7 transform of the image
Barb.bmp and then plotting

g2 a + 950(abs(g2)>8)(1-a)
+ 475(abs(g2)<8)(1-a)
\a = (x<c)(y<c)\c = -.5 + 1/2ˆ2

The value950 is the maximum magnitude for the transformed image (obtained usingAnalysis/Statistics), so this formula
displays the brightest white for transform values that exceed8 in magnitude, and a dull gray for those which do not, and
it leaves the trend image values unchanged from their original values. The image in (b) was produced in the same way,
except a wavelet packet transform was used.

6.2.1c
s Compute5-level Coif30 compressions ofalfalfa_22050.wav using both wavelet and wavelet packet

transforms, and complete a table of data similar to Table 6.1. Can you hear any differences between the compressed
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signals and the original?

6.2.2c Compute5-level Coif30 compressions ofdenoised_thrush.wav using both wavelet and wavelet packet
transforms, and complete a table of data similar to Table 6.1.

6.2.3c Compute5-level Coif30 compressions ofCall(Jim).wav using both wavelet and wavelet packet trans-
forms, and complete a table of data similar to Table 6.1.

6.2.4c
s The sound filenoisy_osprey_clip.wav is a noisy version ofosprey_clip.wav . Compute RMS

errors for threshold denoisings with both wavelet and wavelet packet transforms. How much reduction of RMS error is
obtained through this denoising? Which denoising sounds better, and why?

6.2.5c LoadCall(Jim).wav and simulate a noisy version by plotting

g1(x) + rang(0)

Perform threshold denoising using a wavelet transform and awavelet packet denoising. Which denoising has smaller
RMS, and which sounds better? Explain why.

6.2.6c
s Produce a table like Table 6.2, but use theBoat.bmp image.

6.2.7 Produce a table like Table 6.2, but use theAirfield.bmp image.

6.2.8 Produce a table like Table 6.2, but use thePeppers.bmp image.

6.2.9 Compare J2K, ASWDR, and WSQ methods for compressingfingerprint_1.bmp at 10 : 1 compression
ratio. By compare we mean in terms of PSNR and subjective visual inspection of both the whole images, and zooms
about the coordinates(256, 256).6 Which method produces the best results?

6.2.10c Repeat the previous exercise, but use 20:1 compression.

6.2.11c Repeat Exercise 6.2.9, but use theFingerprint_2.bmp image and(128, 128) as zoom coordinates.

6.2.12c Repeat Exercise 6.2.10, but use theFingerprint_2.bmp image and(128, 128) as zoom coordinates.

Section 6.3

Example 6.3.1 [Figure 6.3] The graph in (a) was obtained by plotting

2pi(1-2pi(u/w)ˆ2)eˆ{-pi(u/w)ˆ2}a/w
\w=1/16\u=ax\a=2ˆ(m/6)
\m=0

over the interval[−0.5, 0.5] using4096 points. The top graph in (b) was then obtained by selectingTransform/Fourier,
clicking thePlot button, and retaining only the first graph plotted (the real part of the DFT, since the imaginary part is
essentially zero) and changing theX-interval to[−75, 75]. The rest of the graphs in (b) were obtained by successively
plotting the formula above (changing\m=0 to \m=2 , \m=4 ,. . . , \m=8 ), and then plotting Fourier transforms.

Example 6.3.2 [Figure 6.4] The image in (a) was obtained by plotting

sin(40pi x)eˆ{-100pi (x-.2)ˆ2}+
[sin(40pi x)+2cos(160pi x)]eˆ{-50pi (x-.5)ˆ2}
+ 2sin(160pi x)eˆ{-100pi(x-.8)ˆ2}

6The J2K compression can be done with IMAGEANALYZER, and its decompression saved as abmp file for computing PSNR withFAWAV .
Similarly, the WSQ compression can be done with WSQ VIEWER.
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over the interval[0, 1] using2048 points, and then selectingScalogram/Analysisand computing a Mexican hat scalo-
gram withWidthspecified as1/16. The image in (b) was obtained by plotting

sumk(100u(u-.1)(u+.2)(-.2<u<.1)(abs(k-1)>.5))
+.1sin(12pi v)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x-2

over the interval[−5, 5] using1024 points, changing the plotting style toLines,and then computing a Mexican hat
scalogram withWidthspecified at2.

6.3.1c
s Compute Blackman windowed spectrograms for the following three shifted and scaled Mexican hat wavelets:

2pi(1-2pi(u/w)ˆ2)eˆ{-pi(u/w)ˆ2}a/w \w=1/16\u=a(x+.25 )\a=2ˆ(m/6) \m=8

2pi(1-2pi(u/w)ˆ2)eˆ{-pi(u/w)ˆ2}a/w \w=1/16\u=ax\a=2ˆ (m/6) \m=32

2pi(1-2pi(u/w)ˆ2)eˆ{-pi(u/w)ˆ2}a/w \w=1/16\u=a(x-.25 )\a=2ˆ(m/6) \m=16

over the interval[−0.5, 0.5] using 1024 points [and displaying the spectrograms withDisplay stylesettingLinear
(global)]. How do these spectrograms relate to the time and frequencydecomposition given by a Mexican hat CWT?

6.3.2c For the following test signal

[sin(80pi x)-cos(40pi x)]eˆ{-100pi (x-.2)ˆ2}+
[sin(160pi x) + cos(80pi x)]eˆ{-50pi (x-.5)ˆ2}
+ sin(80pi x)eˆ{-100pi(x-.8)ˆ2}

graphed over[0, 1] using4096 points, plot its Mexican hat scalogram using6 octaves,42 voices, and a width of0.05.
Explain the relationship between the features of the scalogram and the frequencies of the sine and cosine functions in
the signal’s formula.

6.3.3c For the following simulated ECG signal

sumk(100u(u-.1)(u+.2)(-.2<u<.1)(abs(k+1)>.5))
+.1sin(16pi v)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x+2

graphed over the interval[−5, 5] using8192 points, plot its Mexican hat scalogram using 8 octaves, 16 voices, and
width 2.

6.3.4c For the following simulated ECG signal

sumk(100u(u-.1)(u+.2)(-.2<u<.1))
+.2sin(16pi v)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x+2

graphed over the interval[−5, 5] using8192 points, plot its Mexican hat scalogram using 8 octaves, 16 voices, and
width 2.

Section 6.4

Example 6.4.1 [Figure 6.5] The image in (a) was produced by graphing the same function asin Example 6.3.2, then
selectingAnalysis/Scalogram, and choosing aGabor (complex)scalogram. The scalogram was plotted using8 octaves
and16 voices, and a width parameter of1 and freq. parameter of5. The image in (b) was obtained by computing a
Blackman windowed spectrogram of the signal.



Examples and Exercises forA Primer on Wavelets:Chapter 6 45

Example 6.4.2 [Figure 6.6] The image in (a) was obtained by loading the sound fileCall(Jim).wav and com-
puting a Blackman windowed spectrogram. The image in (b) wascomputed using aGabor (complex)scalogram using
4 octaves and16 voices, and a width parameter of1/8 and freq. parameter of10.

Example 6.4.3 [Figure 6.7] The graph in (a) was obtained by loading the sound fileCall(Jim).wav , then chang-
ing theX-interval to .09, .09 + .371519274376417/2, and then clipping out the displayed graph (right-clickingand
selectingClip from the popup menu). The spectrum in (b) was obtained from (a) by selectingTransforms/Fourier,and
choosing the optionsAmp/Phaseand interval type[0, L] → [−A,A]. Removing the phase graph (graph 2) from the
resulting transform, and changing theX-interval to[0, 992] andY -interval to[−1, 3].

Example 6.4.4 [Figure 6.8] The image in (a) was obtained by computing a Blackman windowed spectrogram of the
sound file

Buenos_aires_Madonna_lyrics.wav

The image in (b) was obtained by computing a scalogram of typeGabor (complex)using3 octaves and85 voices, and
a width parameter of0.1 and freq. parameter of20, and changing the display style toLog (global).

6.4.1c Compute spectrograms and scalograms for the word “call” from each of the following 10 recordings:

call back 1.wav, call back 2.wav, ... , call back 10.wav.

Can you formulate any conjectures about formants of variousspeakers (e.g. male/female, or Native English/Foreign,
etc.)?

6.4.2 Do a time-frequency analysis of the sound clipchaiya chaiya clip.wav . Does the Multiresolution Prin-
ciple apply here? [The spectrogram is best viewed with AUDACITY . TheGabor (complex)scalograms from FAWAV ,
will need to be constructed from clips of the audio file using the following settings: 3 Octaves, 32 voices, width0.05,
and freq.10.]

Section 6.5

Example 6.5.1 [Figure 6.9] The spectrogram in part (a) of the figure was generated by loading the sound file
el_matador_percussion_clip.wav and then selectingAnalysis/Spectrogramand performing a Blackman win-
dowed spectrogram with the default settings. To produce (b)the sound file

Buenos Aires percussion clip.wav

was processed in a similar way.

Example 6.5.2 [Figure 6.10] The processed spectrogram at the top of the figure was produced from the spectrogram
shown in Figure 6.9(a) of the Primer (see the example just discussed) by selectingGraph/Plotand then plotting the
formula

g1(2500 < y < 4500)

The pulse train shown at the bottom was then generated by selectingGraphand then choosingPercussion scalogram.

Example 6.5.3 [Figure 6.11] The percussion scalogram was generated from the pulse traingenerated by the method
described in the previous example. You select aGabor (complex)type of scalogram and then enter the following data:

Octaves: 4 Voices: 64

Width: 0.5 Freq.: 0.5
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and plot the scalogram.

Example 6.5.4 [Figure 6.12] The percussion scalogram in this figure was generated in the following way. First,
the Blackman-windowed spectrogram of the sound fileBuenos Aires percussion clip.wav was produced.
Second, from the spectrogram menu selectGraph/Plotand plot the following function:

g1(2000 < y < 3000)

Third, selectGraph/Percussion scalogramfrom the spectrogram menu. Finally, in the scalogram form that opens up,
you specify aGabor (complex)type of scalogram, enter the following data

Octaves: 5 Voices: 51

Width: 2 Freq.: 1

and plot the scalogram.

6.5.1c Use the percussion scalogram method to analyze the rhythm inthe audio fileConga_solo_clip.wav .

6.5.2c Use the percussion scalogram method to analyze the rhythm inthe audio filebrazil_clip.wav .

6.5.3c Use the percussion scalogram method to analyze the rhythm inthe audio filebrazil_medley_clip.wav .
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Solutions to selected exercises

Chapter 2

2.1.1 (a) (a1 |d1) = (3
√

2, 6
√

2, 3
√

2 | −
√

2, 0,
√

2) (c) (a1 |d1) = (1.5
√

2, 3
√

2, 2
√

2,
√

2 | − 0.5
√

2, 0, 0, 0)

2.1.2 (a) f = (2, 2, 0,−2, 3, 3, 0,−2) (c) f = (5, 1, 1, 3, 3, 1, 0, 0)

2.1.3 (a) f̃ = (2, 2, 3, 3, 4.5, 5.5, 6, 6), largest error =0.5. (c) f̃ = (0, 0,−2,−2,−1,−1, 2, 2), largest error =2.

2.1.5 (b) The original signal and its 1-level Haar transform are shown in Figure 12.
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(b) 1-level Haar transform

Figure 12
Solution to 2.1.5(b).

2.2.1 (a)Ea1 = 108, Ed1 = 4, Ef = 112 = 108 + 4. (c) Ea1 = 32.5, Ed1 = 0.5, Ef = 33 = 32.5 + 0.5.

2.2.3 (a)12.5% (c) 37.5%

2.2.5 (b) Ea1 = 1.91685 · · · × 10−4, Ed1 = 1.86057 · · · × 10−6, Ef = 1.935457× 10−4 = Ea1 + Ed1 to an accuracy
slightly better than6 × 10−19.

2.2.7 (b) The1-level,2-level, and3-level transforms are respectively:

(a1 |d1) = (−16
√

2, 8
√

2, 48
√

2, 96
√

2 | 0,−24
√

2, 0, 0)

(a2 |d2 |d1) = (−8, 72 | − 24,−48 | 0,−24
√

2, 0, 0)

(a3 |a2 |d2 |d1) = (32
√

2 | − 40
√

2 | − 24,−48 | 0,−24
√

2, 0, 0).

2.3.1 (a)−2 (c) 8

2.3.5 (0.5
√

2, 0.5
√

2, 0, 0, . . . , 0) and(0.5
√

2,−0.5
√

2, 0, 0, . . . , 0)

2.4.1 (a) f + g = (3, 5, 1, 7), f − g = (1, 1, 3, 1), 3f = (6, 9, 6, 12), −2g = (−2,−4, 2,−6)
(c) f + g = (0, 1, 1, 2, 0, 2), f − g = (−2,−3, 1, 0, 2, 0), 3f = (−3,−3, 3, 3, 3, 3), −2g = (−2,−4, 0,−2, 2,−2)

2.4.2 (a)A1 = (3, 3, 6, 6, 3, 3), D1 = (−1, 1, 0, 0, 1,−1)
(c) (a)A1 = (1.5, 1.5, 3, 3, 2, 2, 1, 1), D1 = (−0.5, 0.5, 0, 0, 0, 0, 0, 0)
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2.4.4 (a)A1 = (1.5, 1.5, 1, 1, 3, 3, 3.5, 3.5), D1 = (0.5,−0.5, 2,−2,−1, 1,−0.5, 0.5)
(c) A1 = (1.5, 1.5,−1,−1, 3.5, 3.5, 2, 2), D1 = (−0.5, 0.5, 0, 0, 0.5,−0.5, 0, 0)

2.4.6 (a)A2 = (1.25, 1.25, 1.25, 1.25, 3.25, 3.25, 3.25, 3.25), D2 = (.25, .25,−.25,−.25,−.25,−.25, .25, .25)
(c) A2 = (.25, .25, .25, .25, 2.75, 2.75, 2.75, 2.75), D2 = (1.25, 1.25,−1.25,−1.25, 0.75, 0.75,−0.75,−0.75)

2.5.1 The graphs are shown in Figure 13 below,52 transform values were used to produce the signal in Figure 13(d),
hence a19.7 : 1 compression ratio. Any threshold less than0.5 will produce at least99.99% of energy, using0.49
we obtained a signal that has a maximum error of0.125. [Note: since the signal is integer-valued, this error could be
completely eliminated by rounding to nearest integer.]
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Figure 13
(a) Signal(b) 10-level Haar transform, (c) energy map of Haar transform, (d) 19.7:1 compression of Signal, 100% of energy.

2.5.2 The graphs are shown in Figure 14 below. To get100% energy requiresall of the coefficients (no compression)
so we did not graph it. Instead, we found that a threshold of1.245 will retain 65 transform values (a compression ratio
of 15.8:1) and produces the graph shown in Figure 14(d). The maximum error between this signal and the original
signal is0.604.

2.5.3 For (a) we get a sup-norm difference of0.74, while for (b) we get2.66 × 10−15. Clearly the series for (b)
performs the best. The reason is that the function in (b) is a step function so all of the Haar transform values are
0 except for a small number corresponding to Haar wavelets whose supports overlap the jumps in the step function.
Those relatively few high-magnitude coefficients are all included by specifying the highest50, hence the extremely
small error (due to the roundoff error that always occurs with digital calculations). The function in (a) is not a step
function so it has many more non-zero transform values.
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Figure 14
(a) Signal(b) 10-level Haar transform, (c) energy map of Haar transform, (d) 15.8:1 compression of Signal, 99.99% of energy.

2.6.2 It looks like a sequence of random numbers (just as the signalfrom problem 2.6.1 looks random) and, again
just like the signal from 2.6.1, it sounds like the static onehears in radio transmissions.

2.6.3 Noisy signals are shown for parts (a) and (d) in Figure 15. To denoise these signals a threshold of35 was used
in both cases. The denoised signals are shown in the Figure. The denoising for the step function in (a) was the best
(most representative of the original signal). The main reason is that the underlying signal for (a) is a step function which
is best for Haar transforms.

Chapter 3

3.1.1 V2
1 = α1V

1
1 +α2V

1
2 +α3V

1
3 +α4V

1
4 where eachV 1

k , k = 2, 3, 4, is a translate ofV1
1 by 2∗(k−1) time-units.

It follows thatV 1
4 is a translate by6 units with a support of4 units, and thereforeV2

1 has a support of10 time-units.
V2

2 = α1V
1
3 + α2V

1
4 + α3V

1
5 + α4V

1
6 and it therefore has a support of10 time-units. Because its support begins with

the support ofV1
3, which is a translation ofV1

1 by 4 units, it follows thatV 2
2 is a translation ofV 2

1 by 4 units. Similar
calculations show that, in general,V2

m has a support of10 time-units and is a translation ofV2
1 by 4(m− 1) time-units.

3.1.3 No, it equals0.896575 . . .

3.1.5 The original signal for (b) and its 1-level Daub4 transform are shown in Figure

3.1.7 Maximum errors:A1 : 2.259 × 10−4, A2 : 1.389 × 10−3, A3 : 5.877 × 10−3, A4 : 1.572 × 10−2.
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Figure 15
Denoising for Exercise 2.6.3.
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(b) 1-level Daub4 transform

Figure 16
Solution to 3.1.5(b).

3.1.10 The graphs are shown in Figure 17 below. A threshold of3.5 retains17 transform values (a compression ratio
of 60:1) and produces the graph shown in Figure 14(d). The maximum error between this signal and the original signal
is 0.9357. [Note: Using 65 transform values, as with the Haar case, we obtained a maximum error of0.0874, which is
several times smaller than the maximum error of0.604 for the Haar case.]
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Figure 17
(a) Signal(a) 10-level Daub4 transform, (c) energy map of Daub4transform, (d) 60:1 compression of Signal, 99.99% of energy.

3.2.2 We found that1334877.16 equals both the energy off and its 3-level Daub4 transform. [Note: energies of
signals are found by selectingAnalysis/Statisticsand computing statistics (which includes the energy) for the desired
signal.]

3.2.4 We obtained the following results

Daub4 Haar
(a) 75.6% 72.1%
(d) 85.4% 86.7%

3.3.1 We have
g(t2m−1+k) = g(t2m−1) + g′(t2m−1)(kh) + g”(t2m−1)(k

2h2) + O(h3).

Hence,

f · W1
m = g(t2m−1){β1 + β2 + β3 · · · + β6}

+ g′(t2m−1){0β1 + 1β + 2 + 2β3 + · · · + 5β6}
+ g”(t2m−1){02β1 + 12β2 + 22β3 + · · · + 52β6} + O(h3)

= O(h3).
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3.3.3 The maximum errors areA1 : 3.0078× 10−5, A2 : 3.5018× 10−4, A3 : 2.7638× 10−3, A4 : 1.4618× 10−2.

3.3.9 The mininum number of terms for99.99% of energy are

Levels: 1 2 3 4 5 6
Daub4: 335 192 162 161 161 160
Daub6: 334 167 99 90 90 92
Daub8: 333 167 85 68 70 70

3.3.12 The maximum errors areA1 : 3.0078×10−5, A2 : 3.5018×10−4, A3 : 2.7638×10−3, A4 : 1.4618×10−2.

3.3.12 The mininum number of terms for99.99% of energy are

Levels: 1 2 3 4 5 6
Coif6: 334 188 160 156 155 157
Coif18: 333 168 85 52 55 54
Coif30: 333 168 85 42 44 38

3.3.16 The CoifJ maximum errors are:Coif6: 2.4296× 10−7, Coif12: 2.4842× 10−10, Coif18: 5.5743× 10−13,
Coif24: 3.8137×10−13, Coif30: 4.1636×10−13. The DuabJ maximum errors are:Daub4: 3.3445×10−3, Daub6:
4.3118×10−3, Daub8: 5.3033×10−3, Daub10: 6.2972×10−3, Daub12: 7.2894×10−3, Daub14: 8.2789×10−3,
Daub16: 9.2653 × 10−3, Daub18: 1.0249 × 10−2, Daub20: 1.1230 × 10−2.

3.4.1(d) The graphs for part (d) are shown in Figure 18. The threshold used was2.0, which retained only19 coeffi-
cients of the transform, hence a1024 : 19 ≈ 54 : 1 compression ratio. The maximum error was0.4411.

3.4.5(d) With 6 levels there was a minimum number of 17 transform values.

3.4.7(d) With 7 levels there was a minimum number of 9 transform values.

3.5.2 The entropy is
N∑

k=1

pk log2(1/pk) =
N∑

k=1

(1/N) log2 N = log2 N .

3.5.4 Using the rule-of-thumb of(entropy) + 0.5 we obtained these estimates for the signalalfalfa_2.wav
(which is available from the Exercises webpage of the FAWAV website): Original signal:≈ 11.9 bpp. 13-level Coif30
transform (dead-zone histogram):≈ 10.3 bpp. 4-level Coif30 transform (with different quantization on the trend and
fluctuation):≈ 7.7 bpp.

3.5.6 For problem 3.5.4, using the signalalfalfa_2.wav we obtained these errors.

Sup-norm difference Rel. 2-Norm difference
13-level (Uniform threshold Value1/2ˆ16 ) 0.622 5.66 × 10−5

4-level (Multiple thresholds Value1/2ˆ16, 1/2ˆ12 ) 11.68 1.02 × 10−3

Note: for both compressions the sound of the signals was indistinguishable from the original recording.

3.6.1(b) The signal and denoised signal (using a threshold of16) are shown in Figure 19. This was the best of the
denoisings, due to the lack of any large jumps in the signal values. (The denoising for (d) with a threshold of16 was
the next best.)

3.6.4 The RMS error (2-norm difference) for the noisy signal was501.87 while for the denoised signal it was379.60,
a24% reduction.
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Figure 18
(a) Signal, (b) 10-level Daub4 transform, (c) energy map of Daub4 transform, 54:1 compression, 99.99% of energy.
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Figure 19
Solution to 3.6.1(b).

3.7.2 The maximum errors areA1 : 1.32 × 10−4,A2 : 6.15 × 10−4, A3 : 2.31 × 10−3,A1 : 1.17 × 10−2.

3.7.5 The minimum number of terms are listed in the following table.

Levels: 1 2 3 4 5 6
Terms: 335 206 206 233 246 220
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3.7.6 To obtain the result we compute

20uˆ2(1-u)ˆ4 cos(12pi u) \u = x

over the interval[0, 1] using16 384 points. Then we perform a1-level DD 5/3 (2,2) transform. For this transform
we change theX-interval to[0, .5] and then plot the function

20uˆ2(1-u)ˆ4 cos(12pi u) \u = 2x

(note the change from\u = x to \u = 2x ) with the optionAuto-fit notselected (so that theX-interval displayed
remains as[0, 0.5]). Finding the Sup-norm difference between these two graphsyields a maximum error of5.92×10−7.

3.8.2 The maximum errors areA1 : 2.74 × 10−6,A2 : 5.36 × 10−5, A3 : 7.91 × 10−4,A1 : 9.63 × 10−3.

3.8.5 The minimum number of terms are listed in the following table.

Levels: 1 2 3 4 5 6
Terms: 333 168 85 64 67 65

3.8.6 To obtain the result we compute

20uˆ2(1-u)ˆ4 cos(12pi u) \u = x

over the interval[0, 1] using16 384 points. Then we perform a1-level Daub 9/7 transform. For this transform we
change theX-interval to[0, .5] and then plot the function

sqr(2)20uˆ2(1-u)ˆ4 cos(12pi u) \u = 2x

(note the change from\u = x to \u = 2x and the factorsqr(2) ) with the optionAuto-fit not selected (so
that theX-interval displayed remains as[0, 0.5]). Finding the Sup-norm difference between these two graphsyields a
maximum error of7.08 × 10−7.

Chapter 4

4.1.1(a) The1-level Haar transform array is



−4 1 0 −1
5 9 −3 1
2 3 −2 1
9 15 1 −1


 .

4.1.2 (a) The2-level Haar transform array is



−4 1 0 −1
5 9 −3 1

9.5 −2.5 −2 1
14.5 −3.5 1 −1


 .

4.1.4 W1
1 ⊗ V1

1 =

(
1/2 −1/2
1/2 −1/2

)
.
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4.2.1 The PSNR values for the reconstructions of theAirfield.bmp image are

Method/C.R. 8:1 16:1 32:1
JPEG 29.3 26.6 23.5
J2K 31.0 27.9 25.2

ASWDR 31.4 28.4 25.7

4.3.2 The PSNRs for the zooms of the compressions are

Method/C.R. 8:1 16:1 32:1
JPEG 30.54 25.48 19.86
J2K 33.12 28.20 24.42

ASWDR 32.46 27.99 24.54

4.4.1 The quantized transform at threshold2 is shown in Figure 20(a) and for half-threshold1 in (b).
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Figure 20
Quantized transforms for Exercise 4.4.1.

4.4.5 + + + + 1 1 1 0 1 +

4.5.5 The images are shown in Figure 21.

4.5.9 The images are shown in Figure 22. If the entire image is transmitted losslessly, then187, 044 bytes are needed.
If only the image in (d) is sent (with just ROI lossless), thenonly 10, 264 bytes are needed, a94.5% savings.

4.6.3 The RD-curve is shown in Figure 23.

4.7.5 The denoisings are shown in Figure 24. We leave the subjective interpretation of them to the reader.

4.8.2 The edge enhancement is shown in Figure 25.
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(a) Original image (b) 0.25 bpp (32:1 compression)

(c) 0.5 bpp (16:1 compression) (d) 1.0 bpp (8:1 compression)

Figure 21
Illustration of Progressive Reconstruction. Each image in (b) to (d) was computed from a single compressed file (saved at1.0

bpp). First, (b) is reconstructed, then (c), then (d).

4.8.6 The relative2-norm differences for these images (compared to a 32:1 decompression ofLena.pgm ) are

Image Full Second Third Fourth Fifth
Barb 0.499 0.467 0.455 0.433 0.379
Zelda 0.548 0.543 0.537 0.524 0.490
Lena 0.040 0.015 0.009 0.005 0.002
Barb 0.609 0.604 0.596 0.579 0.537

Chapter 5

5.1.1 The graphs are shown in Figure 26.

5.1.3 The spectra are shown in Figure 27.

5.2.1 The DFT ofαf + βg is

N∑

m=1

(αfm + βgm)e−i2π(m−1)(n−1)/N = α

N∑

m=1

fme−i2π(m−1)(n−1)/N + β

N∑

m=1

gme−i2π(m−1)(n1)/N

= α(Ff)n + β(Fg)n.
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(a) Original image (b) 200:1 compression

(c) Original with ROI (d) Update of (b) with lossless ROI

Figure 22
Illustration of ROI Property

PSNR (dB)

Rate (bpp)

J2K
ASWDR

Figure 23
Rate-Distortion curves for theBoat.bmp image.
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(a) Original image (b) Wiener2 denoising

(c) TAWS denoising (d) TAWS-SPIN denoising

Figure 24
Zooms of denoisings ofElaine.bmp image.

5.2.2 We have

(Ff)n+N =

N∑

m=1

fme−i2π(m−1)(n−1+N)/N

=

N∑

m=1

fme−i2π(m−1)(n−1)/Ne−i2π(m−1)

=

N∑

m=1

fme−i2π(m−1)(n−1)/N · 1

= (Ff)n.



Solutions to Selected Exercises forA Primer on Wavelets:Chapter 5 59

(a) Original (b) Edge enhancement

Figure 25
Edge enhancement for Exercise 4.8.2.
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Figure 26
(a) Graph of function. (b) Frequency content.

5.2.3 Fix a value ofm from 1 to N . We then have
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Figure 27
(a) Spectrum of Coif12 scaling signalV1

20. (b) Spectrum of Coif12 waveletW1

20.

We now simplify the innermost sum in the last line above. Ifℓ = m, then we have

N/2−1∑

n=−N/2

ei2π(m−ℓ)(n−1)/N =

N/2−1∑

n=−N/2

e0 = N.

If ℓ 6= m, then we have (using a finite geometric series sum):

N/2−1∑

n=−N/2

ei2π(m−ℓ)(n−1)/N =

N/2−1∑

n=−N/2

(ei2π(m−ℓ)/N )n−1

=
e−iπ(m−ℓ)e−i2π(m−ℓ)/N − eiπ(m−ℓ)e−i2π(m−ℓ)/N

1 − ei2π(m−ℓ)/N

=
(e−iπ(m−ℓ) − eiπ(m−ℓ))e−i2π(m−ℓ)/N

1 − ei2π(k−ℓ)/N

= 0

sincee±i2π(m−ℓ) have the same value (of either−1 or +1). Therefore, we have

1

N

N/2−1∑

n=−N/2

(Ff)ne+i2π(m−1)(n−1)/N = fm · 1

and inversion is proved.

5.2.5 Thez-transform is1 + z + z2 + z3 and its roots are−1,±i.

5.3.1 The portions of the DFT that correspond toA3, D3, D2, andD1 are shown in Figure 28.

5.5.3 Before doing normalized correlation, both the text image and the single letter image areinvertedin the sense
that black pixels are converted to white pixels and vice versa. As to the relation to vision, we know that there are neurons
that respond to darkness in the foreground versus brightness in the background, just as there are neurons that respond to
whiteness in the foreground versus darkness in the background. These complementary responses of neurons is loosely
analogous to how we can choose to invert the black and white relationships for our normalized correlations.

5.6.3 To see the solution, you should consult the article by Strichartz (reference [21] for this chapter) where the Daub6
case is discussed in detail.
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Figure 28
DFT with parts labelled (e.g.A3 labels the DFT portion that corresponds toA3).

5.7.1 The spectrograms are shown in Figure 29. They are quite similar; however, the Hanning windowed spectrogram
shows a bit more “smearing” (slightly more extensive light gray patches above and below the darker frequency bands).
Engineers refer to this smearing as “leakage.” Because theyshow less leakage, we generally use Blackman windows
for our spectrograms.

(a) (b)

Figure 29
(a) Hanning windowed spectrogram. (b) Blackman windowed spectrogram.

5.8.2c The spectrogram is shown in Figure 30. The two diagonal segments—forming a top of a triangle shaped object
enclosed in the rectangle at bottom left center—is repeated with different sizes and positions in the time-frequency
plane, and is also inverted in a region at its right edge and again inverted (over a slightly longer time-scale) at the end
of the spectrogram. All of these structures are even clearerin the color version produced by AUDACITY, and reveal
their full effect when the spectrogram is traced as the clip is played. This analysis provides further confirmation of our
Multiresolution Principle.

5.9.2 A musical analysis of thewarbler.wav recording can be found in subsection2.3 Analysis III: A Warbler’s
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Figure 30
AUDACITY computed spectrogram ofHappiness clip.wav.

Songof the articleMusic: a time-frequency approachavailable at

http://www.uwec.edu/walkerjs/media/TFAM.pdf (1)

5.9.4 One solution to selectively amplifying the harp glissando can be found in subsection3.3 Synthesis II: Altering
figure-ground of the articleMusic: a time-frequency approachavailable at the webpage listed in (1). More details on
how FAWAV can be used for this example can be found in the document listed above in the statement of problem 5.8.2.

Chapter 6

6.1.1 (10, 10 | − 4,−4 | 0,−2 | − 2, 0)

6.1.3 Wavelet packet series:183. Wavelet series:228.

6.2.1 Using theThresholdchoice for a wavelet and wavelet packet series, with threshold setting1/2ˆ7:1/2ˆ5 in
both cases, we obtained the following results:

Transform Sig. values Bpp RMS Error
wavelet 1219 0.26 189.5

wavelet packet 1185 0.25 182.2

There are some high-frequency artifacts audible in the compressions, these are very high compressions (≈64:1), a lower
compression ratio (using lower threshold settings) would undoubtedly sound better.

6.2.4 The RMS error between the original and the noisy signal is1003.6. We then performed a5-level Coif30
transform and applied the thresholdingg1(x)(abs(g1(x))>4000) where we obtained the threshold of4000 by
visual inspection of the transform. After inverse transforming the thresholded transform, we obtained a denoised signal
with RMS error of969.1, but there was much less audible noise. Performing the same thresholding on a5-level Coif30



Solutions to Selected Exercises forA Primer on Wavelets:Chapter 6 63

wavelet packet transform, we obtained a denoised signal with RMS error of811.6, which is smaller, and this denoising
sounded better. The wavelet packet denoising was better because there is a lot of energy within the fluctuations of the
osprey’s call. By performing wavelet transforms on those fluctuations we amplify the fluctuations, while at the same
time leaving the noise variance unchanged. That allows for amore effective thresholding operation.

6.2.6 The analog of Table 6.2 for theBoat.bmp image is the following:

Transform Bpp Sig. values PSNR
wavelet 0.5 24034 34.12

wavelet packet 0.5 22229 33.17
wavelet 0.25 11557 30.59

wavelet packet 0.25 10646 29.94


