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Note: Computer exercises, designed fow#aV , are indicated by a superscript For example, problem 2.1.5 below
is a computer exercise. A subscripineans that a solution is provided. For instance, there idutico provided for
problem 2.1.1(a). Solutions begin on page 47.

Chapter 2

Section 2.1

Example 2.1.1 For the signaf = (2, 2,2, 4, 4,4), find its first level Haar transform.

Solution.The average of the first pair of valueigthe average of the second pair of value$,iand the average of the
third pair of values ig. Multiplying these averages by?2, we obtaina' = (2v/2, 3v/2,41/2). To computed®, we find
thatd1 = (f1 — fg)/\/ﬁ =0, anddg = (f3 — f4)/\/§ = —2/\/5 = —\/i, andd3 = (f5 — f6)/\/§ = 0. Thus the first
level Haar transform of is (2v/2, 3v/2,4v/2|0, —v/2,0).

Example 2.1.2 For the signaf = (2,2,2,4,4,8), compute an approximate sigrﬁby inverse transforming the
compressedtaar transfornal | 0,...,0) obtained by setting all the fluctuation values equal to zE&iod the largest

error between each value bandf.

Solution. We find thata! = (2v/2,3v/2,61/2). Therefore, the inverse Haar transform produtes (2,2, 3,3,6,6).
The largest error between each valud aehdf is 2.

Example 2.1.3 [Figure 2.1] To create Figure 2.1 you do the following. First, chodsmwv 1-dimfrom FAWAV's
menu, and then choosgraph/Plot.Plot the formula

20 X2 (1-x)"4 cos(12 pi x)

over the interval of typg0, L] with L = 1. That produces the graph plotted in Figure 2.1(a) (aftercsielgView/Display
styleand choosingBlank for the Grid style and.inesfor the Plot style). To produce Figure 2.1(b), sel&écans-
forms/Waveleand choosélaar as the Wavelet type with entered for the Levels value. After plotting the transform,
change td.inesas the plot style to get the graph shown in the figure.

2.1.1 Compute the first trend and first fluctuation for the followsignals:
@s f=1(2,4,6,6,4,2)
(b)

£f=(-1,1,2,-2,4,-4,2,2)
(C)S f (1a2a37372727171)
f=(

(d) = 2’ 2’ 47476767 87 8)

2.1.2 Given the following Haar transformed signals, find the avaisignald that correspond to them.
@s  (2v2,-v2,3v2,—v2]0,v2,0,v2)
(b)  (4v2,3v2,-v2,2v2|V2,-v2,0,2V2)
©)s  (3v/2,2v/2,2v/2,0]2v2, —/2,1/2,0)
@  (4v2,5v2,7V2,-4v2|V2,2V2,-2V2,V?2)

1This formula is saved in the archiBookFormulas.zip ~ which can be downloaded from tfixamples&Exercisdink at the book’s website.
You extract the formulas from this archive and save them inrectbry that you can then call up with th@ad button under the text box in the
graphing procedure.
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2.1.3 For each of the signakgiven below, compute an approximate sigﬁby inverse transforming theompressed
Haar transfornfal |0, ...,0) obtained by setting all the fluctuation values equal to zer@ach case, find the largest

error between each value bandf.

@s f=1(2,2,3,3,4,5,6,6)

(b) =(1,2,3,3,2,1)

s f=(2,— —2,-2,0,2,2)
(d) = (4,4,4,—-1,-1,1,2,2,4,6)

2.1.4 Consider again problem 2.1.3 above. When will there be areifiee between a value fand a value of the
approximate signdl, and when will the two signals’ values be the same?

2.1.5 Plot 1-level Haar transforms of the following functions—saed uniformly over(0, 1) using 1024 points.
@ flo) =221 -2)
(b)s  f(x) = 2*(1 — x)8 cos(64mz)
(©) (02<z<03)—-304<z<05)+2(05<xz<0.8)
(d)  f(x) = sgn(sin127z)

Section 2.2

Example 2.2.1 For the signaf = (2, 2,4, 6,8, 10), find the energies of its trend and fluctuation subsignalsshog/
that their sum equals the energyfof

Solution. The trend isa! = (2v/2, 5v/2,9v/2) and the fluctuation isl' = (0, —v/2, —v/2). The trend energy,: is
8 4+ 50 4+ 162 = 220, and the fluctuation energy &;: = 0+ 2 + 2 = 4. Their sum is224 and the energy of is
444416 + 36 + 64 + 100 = 224 so they are equal.

Example 2.2.2 Compute the percentage of compaction of the enerdy of (2,2,4, 6, 8,10) by the 1-level Haar
transform, in terms of .1 /&¢.

Solution.In Example 2.2.1, we found th&f: = 220 and thats = 224. Thereforef,: /& = 220/224 = 0.982. ..

Example 2.2.3 [Figure 2.2] To graph Figure 2.2(a), you plot (after selectidit/Points usedand selecting096 as
the number of points):

50X"2(1-X)"6c0s(12pi X)(0<x<1)+80(1-x)"2(2-x)"8sin(2 Opi X)(1<x<2)

usingLinesas the Plot style. Figure 2.2(b) is plotted by performing aHaavelet transform wit2 for the number
of Levels (after changing the Grid style Blank and theY -interval values to-1.5,1.5). Figure 2.2(c) is generated
by right-clicking on the graph for the function [Figure 2a¥{and selectindenergy graph the resulting graph is then
clipped out by right-clicking and selectir@lip and entering for the graph to be clipped. Similarly, Figure 2.2(d) is
created by performing the same steps for the Haar transfoaphg

Example 2.2.4 For the signaf = (2,2,4,6,8,8,12,10), find its 1-level, 2-level, and3-level Haar transforms.

Solution. The pairwise, successive averagesffare2, 5, 8, 11. Hencea! = (2v/2,5v/2,8v/2,11/2). In a similar
way, we find thad® = (0, —v/2, 0, v/2). Thus, thel-level Haar transform of is

(al |d) = (2v/2,5V2,8V2,11V2 | 0, —v/2,0,V2).
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By applying thel-level Haar transform ta!, we obtain

al 2L (a2 |d?) = (7,19 | — 3, -3).

Hence the2-level Haar transform of is
£22 (7,19 | —3,-3]0,—v/2,0,V/2).
Applying thel-level Haar transform ta? we obtain(7, 19) REER (13v/2 | — 61/2). Thus, the3-level transform is

£ (13v2 | —6V2| —3,-3(0,—v2,0,V2).

2.2.1, Find the energies of the trend and fluctuation subsignalthfasignals given in problems 2.1.1 (a)—(d), and
show that their sums are equal to the energies of the sifinals

2.2.2 Compute the percentage of compaction of the enerdybgfthe 1-level Haar transform, in terms&f. /&, for
each of the signalgin problem 2.1.1 (a)—(d).

2.2.3 Another way to measure compaction is by the percentage of tdma@sform values that are less than some
small, preassigned number(>> 0). Compute the percentage of 1-level Haar transform valugishware less than
e = 0.05 for each of the signalin problem 2.1.1 (a)—(d).

2.2.4 For problem 2.2.3, change the value:db ¢ = 0.05 & (so thate depends o) and recompute the percentage
of compaction of the energy dfby the 1-level Haar transform, in terms&f. /&, for each of the signalin problem
2.1.1 (a)—(d).

2.2.5 Findthe energies of the trend and fluctuation subsignatbésignals given in problem 2.1.5 (a)—(d), and show
that their sums are equal to the energies of the sighdldints: In FAWAV , useAnalysis/Statisticio compute energies
for discrete signals. To compu: you can modify thel-level transform by plotting the functiogl(x)(x<1/2)

and then calculating the energy of the resulting signal.il&iity, the functiongl(x)(x >= 1/2) will plot the first
fluctuation.]

2.2.6 Usinge = 0.05 & compute the percentage of compaction of the enerdylyfthe 1-level Haar transform, in
terms of€,:1 /&, for each of the signalf in problem 2.1.5 (a)—(d).Hint: You can also plot a graph indicating where
z-values are smaller in magnitude than some numlisrusing the formulgabs(g1(x))<c) ]

2.2.7 Find thel-level, 2-level, and3-level Haar transforms of the following signals.

(@)  (8,32,48,48,64, 64,40, —8)

(b)s (—16,—16,—16,32,48,48,96,96)
()  (16,16,32,48,64,72,72,72,72, —16, —64, —32, —32, 40, 64, 16)
(d)  (8,8,0,—8,—16,24,24,24,24,16,8,0,8, 8,8, —16)

Section 2.3

Example 2.3.1 Forf = (3,2, -1,4) andg = (2, —2, 2, —2), find the scalar produdt - g.
Solution.f - g =3(2) +2(-2) — 1(2) + 4(-2) = -8.
Example 2.3.2 Compute the inverse 1-level Haar transform of

(a*|d') = (0,1,0,...,0]0,0,...,0),



Examples and Exercises férPrimer on Wavelets:Chapter 2 5

and of
(a'|d") = (0,0,...,0]0,1,0,...,0).

Solution. For the inverse transform @6, 1,0,...,0|0,0,...,0) We find thatfs = (as 4+ ds)/v2 = 1/v/2 andfy =

(az — d3)/+/2 = 1/4/2 and all other values df are0. Thus the inverse transform(®, 0, v/2/2,1/2/2,0,0,...,0).
For the inverse transform a,0,...,0]0,1,0,...,0) we find thatf; = (az + do)/vV2 = 1/v/2 and f, =

(ag —ds)/v/2 = —1/+/2 and all other values dfare0. Thus the inverse transform(8, 0, v'2/2, —v/2/2,0,0, ..., 0).

2.3.1 Find the scalar produdt - g whenf andg are the following:

(@) =(2,1,3,4), g=(-1,2,-2,1)

(b) =(3,2,-1,2), g=(1,3,1,-1)

(C)s =(1,1,—- 1,2,2,-2,2), g=1(0,1,0,1,2,2,1,1)
(d) =(1,1,3), g=(1,0,2)

2.3.2 Prove Property 1.
2.3.3  When will a second fluctuation valu& equal zero?

2.3.4 s the following statement true or fals&¥henever the fluctuation valug = 0, then the signaf is constant
over the support oW?.

2.3.5 Compute the inverse 1-level Haar transform of

(a'|d') = (1,0,...,0]0,0,...,0),
and of

(a*|d') = (0,0,...,0]1,0,...,0).
Section 2.4

Example 2.4.1 Forf = (3,2,—1,4) andg = (2,-2,2,—2), find the sumf + g, the differencef — g, and the
combinatioref — 3g.

Solution.We calculate that
f+g=(3422-2-1+24-2)=(50,1,2)

fog=(3-22+2—-1-24+2)=(1,4,-3,6)
2f — 3g = (6—6,4+6,—2— 6,8+ 6) = (0,10, —8, 14).

Example 2.4.2 Forf = (2,2,4,6,—2, -2, —2,0) find the first averaged signal' and the first detail signdD®.
Solution.The trenda! and fluctuatiord! satisfy

= (2V/2,5V2, —2V/2, —V/2)
= (0,-V2,0,—V2).



Examples and Exercises férPrimer on Wavelets:Chapter 2 6

Hence

Al =(2,2,5,5,-2,-2,—1,—1)
D' =(0,0,-1,1,0,0,—1,1).

and, as a check, we observe tgt + D! = f.

Example 2.4.3 Forf = (2,2,4,6,—2,—2,—2,0) find the second averaged signat and the second detail signal
D2

Solution. We found in the previous example that = (2v/2,5v/2, —2v/2, —v/2). The second trend is theas? =
(7,—-3), and the second fluctuationd® = (-3, —1). Therefore,

A2 = (7a7a757, ) ) ’ )
2°2°2°2°2°2° 2" 2
-3 - -1 —-111

D2 :( ; & ; § afai)'

and, as a check, we observe tt + D? = AL

Example 2.4.4 [Figure 2.3] The graphs in Figure 2.3 were created by graphing the fumétigyiven in Example
2.1.3, and then choosingeries/Waveleand selectingdaar for the wavelet, using0 for the number of Levels, and
choosingAscending termfor the Series type. You then enter successively, 4,...,512 for the number of terms to
use (in the text box to the right éfscending term3: For 1, we get the plot ofA'?, for 2 we get the plot ofA?, for 4
we get the plot ofA2, ..., for512 we get the plot ofA .

2.4.1 For the following signalsf andg, compute their sunfi + g, their differencef — g, and the constant multiples
3f and—2g.

@@y f=(2,3,2,4), g=(1,2-1,3)
(b) f=(4,21,1,00), g=(-1,212—1,3)
s f=(-1,-1,1,1,1,1), g=(1,2,0,1,—1,1)
d f=(1,1,2,1), g=(1,2,-3,—4)

2.4.2, For each of the signals in problem 2.1.1, compute the firsaesl signaA' and the first detail signdD®.

2.4.3 Find expressions for the first averaged sigadl and the first detail signdD® in terms of the values of =

(f1, fas s IN)-

2.4.4 For each of the following signals, compute the first averagigdal A and the first detail signdD®.

@s (2,1,3,-1,2,4,3,4)
(b) (1,2,3,4,5,6,7,8)
(s (1,2,-1,-1,4,3,2,2)
(d) (9,4,1,0,0,1,4,9)

2.4.5 Express the*d averaged signah? and the2"? detail signalD? in terms of the values df = (f1, fo, ..., fn)-

2.4.6 For each of the signals in problem 2.4.4, compute2tifeaveraged signah? and the2"? detail signalD?.
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Section 2.5

Example 2.5.1 Produce graphs like the ones shown in Figure 2.4 6@ samples of the following signal:
fl@)=31<z<4)—-206<z<8+4(10<z<18)

over the interval0, 20]. What threshold should be used to retain99% of the energy? What compression ratio does
this produce, and what is the maximum error between theraigignal and the compressed signal?

Solution.ChoosingNew 1-dimfrom the FAWAY menu and then choosir@graph/Plot we plot the formula above over
the interval of typg0, L] settingL = 20. This produces the graph shown in Figure 1(a) (after we ahgiesv/Display
styleand selecting 8lank Grid style and aots Plot style). Selectindransform/Waveleand choosingHaar with
10 levels, we obtain the Haar transform shown in Figure 1(bje(athoosingView/Display styleand changing the
Y-range to—20, 20). By right-clicking on the Haar transform graph and choos8gt magnitudesnd then right-
clicking again and choosinBnergy mapand enterin@ for the graph number (leaving theercentagebox checked),
we produce the graph shown in Figure 1(c) (after right-atigkand choosinglip and clipping grap!8). Finally, by
choosingAnalysis/Tracdrom the menu of the window containing the Haar transfornmglaith its sorted magnitudes
and energy map, we find by tracing on the three graphsith@t of the energy is used when the Indexdis (i.e.,
46 values used because imWAV the Index counter for arrays of data is initializedatather thanl), this represents
1024/46 ~ 22 to 1 compression.

We also find by tracing tha®9.99% of the energy is used when a threshold0d$ is used. By graphing the
function g1(x)(abs(gl(z)) > 0.5) we produce a fourth graph that is a thresholded transformenTdy choosing
Transform/Waveletselecting Haawith the Inverse box checkednd enteringt for the graph number, we plot an
approximation of the given step function. We then rightklon the graph of this approximation, chod3epy,return
to the window with the original function displayed and rigtick on its graph followed by selectinBaste This
pastes the approximate function data into the window, fanarison with the original graph. SelectiAgalysis/Norm
differenceand using the default valueSip-normgraphsl and2, andabsolut¢ we find that the maximum error (in
magnitude) between the original signal and the approxomas 0.1094. (Note: since the original signal consists of
integer values, by graphing the functigri(g2(x)+1/2) we round the approximate signal values to their nearest
integers. Thus producing a signal that is equal to the aalgiignal at all values.)

Example 2.5.2 [Figure 2.4] To produce Figure 2.4(a) you graph
(2<=x<4)-(6<=x<9)+2[14<=x<18]-2(10<= x< 11)

over the interval0, 20]. Figure 2.4(b) is obtained using a 10-level Haar transfofanget Figure 2.4(c) you right-click
on the graph of the Haar transform and sef&ett magnitudethen right-click again and seleEnergy graph You then
plot the energy graph for graph 2 (the sorted magnitude grdpgure 2.4(d) was obtained by selectidgalysis/Trace
and using the tracing tool to determine that S2ehighest magnitude transform values accountlfit% of the energy
of the signal. Then, by returning to the window containing t¢iiginal signal, selectin§eries/Waveleand performing

a Haar serigswith Series typeHighest mag. coefficientand entering2 for the number of coefficients, we obtain the
graph shown in Figure 2.4(d).

Example 2.5.3 [Figure 2.5] Figure 2.5 is produced in the same way as Figure 2.4 (seedingcexample), except
that4096 points are used and the following function

40x"2(1-x)"4cos(12pi x)[0<x<1)+{40(x-1)"2(2-x)"8cos( 48pi x)
+80(x-1)"12[2-X]"2sin(80pi x)}[1<x<2]

is graphed ovelj0, 2] to produce the initial signal.
2.5.% Produce graphs like the ones shown in Figure 2.4 6@ samples of the following signal:

flz)=2[1<z<2]-3B<z<i+b6<z<T+48<z<9

2See theRemark on the next page.
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Figure 1
(a) Signal, (b) 10-level Haar transform, (c) energy map of Haaransform, (d) 22:1 compression of Signal, 100% of energy.

over the interval0, 10]. What threshold should be used to retai99% of the energy? What compression ratio does
this produce, and what is the maximum error between ther@igignal and the compressed signal? [Note: maximum
error is computed using treip-normmethod described below in Example 2.5.4.]

2.5.Z7 Repeat problem 2.5.1 for each of the following:
@s flz)==z(10 - )

b)) flr)=22<z<4]-2B6<z<T+2B<z<Y
© fl@)=22<z<4]—-zbh<z<T+2B<z<Y

Remark. The next three exercises deal with Haar wavelet seriegavelet seriess a convenient term for the following
three step process:

1. Compute a transform, either wavelet or wavelet packet.
2. Modify the transform values from Step 1.
3. Compute the inverse transform of the modified values frosp 3.

There are a number of ways to carry out the modification of taealet transform values in Step 2. The most common
method is to threshold the values. When a threshold methoded, we say that the three step process produces a
thresholded seriesTo produce a thresholded series withWRV , you begin by selectin§eriesfrom the menu. You
then select eitheéWaveletor Wavelet packetb specify which of the two types of transform will be used. ialdg box
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will then appear on the right side of the window, and you geléeesholdas the method for the series. Another type of
series iHighest mag.which modifies the transform values by using only a specifigdlmer of the highest magnitude
transform values (setting all others equal to zero).

Example 2.5.4 For the function in Example 2.5.1, compute the Haar seriggyube 30 highest magnitude values.
What is the sup-norm difference between the function andatslet series? What is tt&ip-norm differencever the
interval[2, 3]?

Solution. We plot the function as described in the solution of Exampte12 Selectinglransform/Waveleand then
Haar for the transform anélighet mag. coefficientwith 30 as the number, we obtain an approximation of the original
signal. Thesup-norm differencbetween the two signal ik98. To find the sup-norm difference over the interial3]

we chooseview/Display styld¢o change theX-interval to[2, 3]. The graphs are then displayed over the intefa)

and computing a sup-norm difference between them yiglalsl 7.

2.5.3 For the functions in problem 2.5.2 (a) and (b), compute tharlsaries using th&) highest magnitude values.
Which function is best approximated by such a Haar series? Why?

2.5.4 For the Haar series graphed in problem 2.5.3, what is thermani error between the original function and
the Haar series over the intenjal5, 3.5], and over the intervgb.5,6.5]? Why are the two errors very similar over
[2.5,3.5], but not over5.5, 6.5]?

2.5.5 Suppose a Haar transforfa® |d*| ... |d!) is thresholded, producing a sign@* |d*| ... |d!), and then
an inverse Haar transform is performed on the thresholdgdhkiproducing a Haar series. Find an expression for this
Haar series in terms of scaling signals and wavelets.

Section 2.6

Example 2.6.1 [Figure 2.6] To get Figure 2.6(a), you graph
Jdran(x)+(2<=x<4)-(6<=x<9)+2[14<=x<18]-2(10<= x< 11)

over |0, 20]. Figure 2.6(b) was obtained in the following way. First, aaHansform with 10 levels was performed and
then theY -interval changed t0—4, 4]. Second, by using th&acetool, or by right-clicking on the Haar transform and
selectingDisplay cursor coordinateto use the mouse to scan over the graph box with a readautafdy-values, we
determined thab.2 was a good threshold for removing noise. (The horizontglggan Figure 2.6(b) were obtained by
plotting 0.2 and-0.2 with the Auto-fitoption unchecked.) To get the thresholded transform shaviigure 2.6(c),
we plotted the function

gl(x)(abs(gl(x))>c) \c=0.2
Finally, to obtain the denoised signal in Figure 2.6(d) wefgrened an inverse Haar transform on the thresholded
transform.

Example 2.6.2 [Figure 2.7] The graphs in Figure 2.7 were obtained in the same way asé~RB)@r except that the
initial noisy signal was graphed using the formula

Lran(x)+40x"2(1-x)"4cos(12pi x)[0<x<1)

+{40(x-1)"2(2-x)"8cos(48pi x)+80(x-1)"12[2-x]"2sin(8 Opi X)}1<x<2]

over the interval0, 2] using4096 points, andl2 levels were used for the Haar transform.

2.6.L Graph the random noise signdl(z) = rang(z), over the interval0, 1] using8192 points. Then play the
sound generated by this signal, usi@gaph/Audioin FAWAV, with a sampling rate 08820, a bit rate of16 bits, and
volume level 0f32000. What does this random noise sound like?

2.6.Z Perform a 1-level Haar transform of the signal in problem2.8Vhat does this Haar transform look like, and
what does it sound like (when it is played using the same paterwalues as in 2.6.1)?



Examples and Exercises férPrimer on Wavelets:Chapter 3 10

2.6.3 Using the Threshold Method, denoise each of the followiggais (in each case, u$é24 points ando, 10]
as interval):

@s f(z)=402 <z <4]—-605<x<T7+808<xz<9]+ 10rang(x)
(b)  f(z) = 4sin(27z) + 10rang(x)

© flz)=402<z<4]+8z5 <z <7 +40[8 <z < 9]+ 10rang(x)
(d)s  f(z) = [40cos(2mz)](2 < x < 6) + 10rang(x)

Which denoisings would you deem to be the most successfulwvag@

2.6.4 Explain the cause of the very ragged, jumpy appearance afgheised signal in Figure 2.7(d).

Chapter 3
Section 3.1

Example 3.1.1 [Figure 3.1] The graphs oV3, V3 andV?; were produced in the following way. To produtg&
we applied thest! level inverse Daub4 transform to the sigial 0,0, ..., 0). This signal was produced by plotting
the formuladel(x) over the interval0, 1024] with 1024 points. We then chos&ransform/Waveleand selected
the Daub 4 option with 5 levels. To producéW?; we applied thes™ level inverse Daub4 transform to the signal
(0,...,0,1,0,...,0 where thel is in the33™ position (that signal was produced by plotting the fornule(x-32)

over the interval0, 1024] with 1024 points). The reason this works is explained initletahe subsectiorDaub 5/3
transform, multiple levels in section 3.7. As explained in that subsection, we proddgeby applying them-level
inverse Daub4 transform to the sigrfal...,0,1,0,...,0) where thel is in thek*® position,k = 1,..., N/2™; and
we produceW;* by applying then-level inverse Daub4 transform to the sigif@l. .., 0,1,0,...,0) where thel is in
thek + N/2™ position,k = 1,...,N/2™.

Example 3.1.2 [Figure 3.2] To produce Figure 3.2(a) we plotted the formRGx"2(1-x)"4cos(12pi x) over
the interval[0, 1] using 1024 points. Figure 3.2 was then created by choosimgnsform/Waveletand selecting the
Daub 4option with2 levels. Figures 3.2(c) and (d) were plotted by selectiimyv/Display styldrom the menu for the
graph of the original signal and changing tieandY” intervals to the ones shown.

Example 3.1.3 [Figure 3.3] Figure 3.3 was produced in the same way as Figure 2.3 (seef&&m.4), except that
Daub 4 was used as the choice of wavelet.

3.1.1% Explain why V2, has a support of0 time-units and is a translate &2 by 4(m — 1) time-units. (Ignore
wrap-around.)

3.1.2 The3" level Daub4 scaling signals and wavelets have supportsveiiany time-units? Are they all shifts of
V3 andWw3?

3.1.3 DoesOa; + las + 2as3 + 3a4 = 0 hold for the Daub4 scaling numbers?

3.1.4 Show that Property | holds f&-level wavelets, i.e.if a signalf is (approximately) linear over the support of
a 2-level Daub4 waveleW? , then the2-level fluctuation valu€ - W2, is (approximately) zero.

3.1.5 Plot 1-level Daub4 transforms of the following functions—sampletdformly over |0, 1] using1024 points.
[Note: These are the same functions considered in problem 1.1.5.]

@ flz)=2*(1-2)
(b)s  f(z) = 2*(1 — )% cos 647z
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() (02<x<03)—-3(04<z<05)+2(05<z<0.8)
(d)  f(x) =sgn(sin12mx)

Remark. In order to use BWAV to graph the averaged signalsAl, A2, A3, etc.—you proceed as follows. After
plotting the signak, you then choos&eries/Waveletnd selecAscending termas the series choice. If you specify
N/2 number of terms (wher&/ is the number of points), then the first averaged sigalwill be plotted. Or, if you
selectV/4 number of points, theA? will be plotted. Or, by selecting//8 number of points, thed? will be plotted.
(This method of plotting averaged signals is equivalentatong a wavelet transform, then setting all values of the
transform to0 for indices aboveV/2, N/4, or N/8, and then inverse transforming.)

3.1.6 Compute the Daub4 averaged signal§ A2, A3, andA* for the function
g(x) = 202*(1 — x)° cos 487z
over the interval0, 1] using1024 points.

3.1.Z What is the maximum error (over all points) between each ofatreraged signals in problem 3.1.6 and the
given signal?

3.1.§ Repeat problems 3.1.6 and 3.1.7 for the signal

g(x) = 2022 (1 — 2)? cos 647z + 302%(1 — ) sin 307 .

3.1.9 Show thatf - W! = O(h) whenW is a 1-level Haar waveletHint: Use Formula (3.15).]
3.1.1¢ Repeat problem 1.5.2, but use a Daub4 transform instead afatransform.
3.1.1Ff Repeat problem 1.5.3, but use a Daub4 series instead of asela@s. Which function is best approximated

by a Daub4 series? Why?

Section 3.2

Example 3.2.1 [Figure 3.4] Figure 3.4 was created by first plotting the function
50x"2(1-x)"6cos(12pi x)(0<x<1)+80(1-x)"2(2-x)"8sin(2 Opi x)(1<x<2)

over the intervall0, 2] using 4096 points. Then, the graph in (a) was created by selectimmsform/Waveleaind
choosing a Haar wavelet with 2 levels. The correspondingutatire energy profile in (c) was created by right-clicking
on the Haar transform graph and selectimgergy graph.The graphs in (b) and (d) were created in a similar way, except
that a Daub4 transform was used.

3.2.1 \Verify Equations (3.17a)—(3.17c).

3.2.%Z Compute the3-level Daub4 transform of the signfibbtained fromlL024 uniformly spaced samples of
g(z) = 2%(4 — x)*sin 1272

over the interval0, 4]. Compute the energy dfand of its transform and check that conservation of energgysho

3.2.3 Usinge = 0.0001 &, compute the percentage bfevel Daub4 transform values which are less théor each
of the signals in problem 1.1.5 (a)—(d). Compare your reswith al-level Haar transform [see problem 2.2.6].

3.2.4 Repeat problem 3.2.3, but us@devel Daub4 transform instead. Compare your results wiZHevel Haar
transform.
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Section 3.3

Example 3.3.1 [Figure 3.5] The signal analyzed in Figure 3.5 was created by plottinddhaula
50x"2(1-x)"6cos(12pi x)(0<x<1)+80(1-x)"2(2-x)"8sin(2 Opi x)(1<x<2)

over the interval0, 2] using4096 points. To compute 000 times its fluctuationd!, we plotted thel-level Daub4
transform and then graphed
1000g1(x/2+1)

To compute30 times the fluctuation of its fluctuatiad® we plotted its3-level Daub4 transform and then graphed
30g1(x/8+1/4)
Similar computations were done for the Daub6 case.

Example 3.3.2 [Figure 3.6] Figure 3.6 was produced in the same way as Figure 2.3 (seef&&m.4), except that
Daub 20 was used as the choice of wavelet.

Example 3.3.3 [Figure 3.7] Figure 3.7 was produced in the same way as Figure 3.1 (seefx&m.1), except that
an inverse Coif 6 transform was used.

3.3.k Show that iff is obtained from samples of3atimes continuously differentiable functignover the support of
al-level Daub6 waveleW] , then the fluctuation valug- W satisfiesf - WL = O(h3).

3.3.7 Compute the Daub6 averaged signal§ A2, A3, andA* for the function
g(x) = 202*(1 — x)° cos 487z
over the interval0, 1] using1024 points.

3.3.3 What is the maximum error (over all points) between each ofatreraged signals in problem 3.3.2 and the
original signal.

3.3.4 Repeat problems 3.3.2 and 3.3.3 for the signal
g(x) = 2022 (1 — x)? cos 64z + 302%(1 — 2)* sin 307 .

3.3.5 Repeat problem 2.5.2, but use a Daub6 wavelet series instealdaar series.

3.3.6 Repeat problem 2.5.3, but use a Daub6 wavelet series insteadaar series. Which function is best approx-
imated by a Daub6 series? Why?

3.3.7 Repeat problem 2.5.2, but use a Daub8 wavelet series insteakdaar series.

3.3.8 Repeat problem 2.5.3, but use a Daub8 wavelet series inst@adaar series. Which function is best approx-
imated by a Daub8 series? Why?

3.3.¢ For the following function, compute the minimum number afite needed to captuf®.99% of the energy in
a Dauly series for eacli = 4, 6,8 and for each level. = 1,2, ..., 6 (using1024 points over the intervdD, 1]):

g(z) = 2*(1 — 2)% cos 25mz.

Note: To determine the minimum number of terms you use the ofioergy fractiorfor a wavelet series and enter the
value0.9999 to require99.99% of the energy. A report is displayed that indicates the nurob&erms used.

3.3.10 Repeat problem 3.3.9 for the Daliseries,J = 10,12, 14.

3.3.1Ff Repeat problem 3.3.9 for each of the following functiongd(ase Haar series as well as Dduseries):
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@ gx)=[01<2<0.2]-3[03<z<0.5]+9[0.7<z<0.9]
z) =101 <z <0.2]cos40mz — [0.3 < z < 0.5]sin 307z + [0.7 < z < 0.9] cos 407z

© g

)
() g(x)=2[0.1<2<0.2]—2%0.3 <z <0.5]+9[0.7 <z <0.9]
)
(d) g(xr)=[0.1 <z <0.2]sin40mx + [0.3 < z < 0.5]2sin 307z + [0.7 < = < 0.9] sin 607z

3.3.12 Repeat problem 3.3.9, but use Cogferies forl = 6,18, 30.
3.3.13 Repeat problem 3.3.11, but use Qaskries forl = 6, 18, 30.

3.3.14 Compare 3-level Coif6 trend values with/2g(8xz) over the interval0, 0.125], whereg(z) is defined by
Equation (3.35) [use!* samples over the intervél, 1] as in the text]. Do the same for the Daub4 transfokute: By
“compare” we mean determine the maximum error.

3.3.1% For the following functiony(z) over the intervalo, 1]:
g(x) = 402*(1 — x)° cos 24mx

comparey/2g(2x) over the interval0, 0.5] with the 1-level Coif trend values fof = 6,12, 18, 24, 30. [Use2!? sam-
ples, and by “compare” we mean find the maximum error.] Do #meesfor Dauly trend values fotJ = 6,12,...,18.

3.3.16 Repeat problem 3.3.15, but compag4z) over |0, 0.25] with Coif/ and Dauly 2-level trend values.

Section 3.4
Example 3.4.1 [Figure 3.8] Figure 3.8 is produced in the same way as Figure 2.5 (see Begahip3), except that a
Coif30 transform is used.

3.4.F Produce graphs like the ones shown in Figures 2.4 and 38)fdrsamples of the following signals over the
interval[0, 10]:

@ fl@)==
b) fl@)=22<z<4]-2B6<zxz<T+2B<z<Y
© fle)=22<z<4]—-zb<z<T+2B<z<Y

(d)s  f(z)=0.0012*(10 — x)?

What thresholds should be used to capt9€)9% of the energy using a 10-level Daub4 wavelet transform? What
compression ratios do these produce, and what are the max@rors between the original signals and the compressed
signals?

3.4.F7 Repeat problem 3.4.1, but use a 10-level Daub18 transform.
3.4.3 Repeat problem 3.4.1, but use a 10-level Coif12 transform.
3.4.4 Repeat problem 3.4.1, but use a 10-level Coif30 transform.

3.4.5 For each of the functions in problem 3.4.1, find the levelrtfrbto 10) which uses the least number of Daub4
transform values to captu®.99% of each signal’s energy.Hint: Use theenergy percentagemethod for forming
wavelet series.]

3.4.6 Repeat problem 3.4.5, but use a Daub12 transform.
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3.4.% Repeat problem 3.4.5, but use a Coif18 transform.
3.4.8 Repeat problem 3.4.5, but use a Coif30 transform.

3.4.9 Record your own voice saying the word “alfalfa” at 8000 Hz &nopp. Using a Coif30 series, determine the
level that uses the least number of transform values thatiegn.99% of the energy of the audio signal.

3.4.10 Repeat problem 3.4.9, but with a recording of “alfalfa” atiip.
3.4.1T Repeat problem 3.4.9, but with a recording of “alfalfa™at 050 Hz and 8 bpp.
3.4.17 Repeat problem 3.4.9, but with a recording of “alfalfa’2at 050 Hz and 16 bpp.

Section 3.5

Example 3.5.1 [Figure 3.10] To graph the signal in (a) you selédew 1-dimfrom the menu, right-click on the graph
area and seledtoad/Sound fileand selecgreasy.wav as the sound file to load. To plot the histogram in (b) you
right-click on the graph and selekfistogram. You then choose an 8-bit histogram with the both the chdicelside
zero valuesand Include sign bitchecked. To obtain the graph in (c) you perform a 14-levef3oiransform of the
signal in (a). Finally, to get the graph in (d) you computestdgram of the transform, but uncheck the chdiedude
zero valuesand make sure that the choilceslude zero values checked. (We call this dead-zone histogram.

Example 3.5.2 [Figure 3.11] To obtain the plot of the fourth trend of in (a), you plotdevel Coif30 transform of
thegreasy.wav signal, selecView/Display,and plot over the newX -interval: 0,.743038548752834/2°4 To
obtain the graph in (b) you plot a histogram with tinelude zero valuesnchecked. To obtain the graph in (c), you
change theX -interval of the Coif30 transform td43038548752834/2°4,.743038548752834 . To obtain the
histogram in (d) you compute a dead-zone histogram of thehgiram (c).

3.5.° Draw a plot of theentropy functionf(z) = xlog,(1/x) over the interval0, 1]. [Hint: In FAWAV, there is
a built-in function,entr(x), which calculates: log,(1/x).] Find the point where the maximum of this function lies,
either by numerical estimation (using tAealysis/Traceprocedure) or by calculus.

3.5.2 Show that the entropy of the uniform probability sequepge= 1/N for k =1,2,..., N, islog, N.
3.5.3 Find the entropy of the sequengg = ¢27%, k = 1,2,...,16 (wherec = 1/ 5>, 27%).

3.5.4 Make arecording of the word “alfalfa” at 8000 Hz and 16 bpptirEate—as was done in the text foreasy—
the number of bpp needed for an optimal, entropy-based assjun of this recording of “alfalfa” (using 16 bpp), then
compare this with a maximum-level Coif30 transform at 16 bpgd with a 4-level Coif30 transform at 16 bpp for the
trend and 12 bpp for the fluctuations.

3.5.5 Repeat problem 3.5.4, but usi2g 050 Hz and 16 bpp.

3.5.& For problems 3.5.4 and 3.5.5, calculate the Sup-norm amdivel2-norm errors between the original and
compressed signalaNpte: The compressed signals can be plotted usingsholded wavelet serieshen the settings
are adjusted (press the button labefalit setting} to Quantized thresholdingnd eithetJniform thresholdor Multiple
thresholdsare selected.]

Section 3.6

Example 3.6.1 [Figure 3.12] To produce the graph in Figure 3.12(a), we plotted the foncti

dran(x)+40x"2(1-x)"4cos(12pi x)[0<x<1)+{40(x-1)"2(2 -X)"8cos(48pi x)
+80(x-1)"12[2-X]"2sin(80pi x)}[1<x<2]
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over the interval0, 2] using4096 points. The graph in (b) was obtained byZlevel Coif30 transform of this signal,
and then changing to theg-interval [—2, 2]. By right-clicking on the graph and selectilisplay cursor coordinates
we were able to scan over the graph and obiairas a threshold for eliminating noisy transform values. Taiobthe
plotin (c) we plotted the function

g1(x)(abs(g1(x))>0.2)

wheregl(x) stands for the transform values. Then by applying an inv€@é0 transform to the graph in (c) we
obtained the graph shown in (d), the denoised signal.

Example 3.6.2 [Figure 3.13] To produce the graph in Figure 3.13(a), we plotted the fondii5rang(0)  over
[0, 1] using4096 points. The mean and standard deviation of this noise wergdfby selectind\nalysis/Statisticom
the menu. To graph the histogram in (b) we calculated-&it histogram with both optiondr{clude zero valueand
Include sign bif checked. To obtain the graph in (c) we performe@devel Coif30 transform of the noise signal from
(a). We then calculated a histogram [the same type as we thd&)] to get the graph in (d).

Example 3.6.3 [Figure 3.14] To get the graph in (a) we loaded the soundriitdésy wolf_whistle.wav . The
graphin (b) was obtained by performing@level Coif18 transform of this sound file. To obtain the drap(c) we then
processed this transform by selecti@gaph/Plotand plotting the formula contained in the filg_3 14 (c).ufl

(by clicking on theLoad button under the formula text area). This is one of the fileg th contained in the zip
file BookFigures.zip that accompanies these exercises. After producing theegsed transform in (c) we then
performed an inverse transform on it to produce the dengiggdhl in (d).

3.6.F Using the threshold method, denoise each of the followiggals (each of which is defined over the interval
[0, 10] using1024 points). Use a 10-level Coif30 transform.

(@ 202 < x < 4) - 30(5<x<7) + 40(8<x<9) + 5rang(0)

(b)s 40cos(4pi x) + 5rang(0)

() 20[2< x < 4] + 5x[b < x < 7] + 20[8 < x < 9]+ 5rang(0)
(d)  40cos(4pi x)(2 < x < 6) + 5rang(0)

Which denoisings would you deem to be the most successfulwag@

3.6.7 Repeat problem 3.6.1, but use a 4-level Coif30 transform.

3.6.3 Repeat problem 3.6.1, but use a 10-level Coif18 transfornadso a 4-level Coif18 transform.

Remark In Exercises 3.6.4 to 3.6.6, you should use the built-in Wev@enoising method obtained by selectibg-
noise/Waveleand checking the box labellgd/erage.Try 5-levels for the wavelet transform. This procedure automati
cally selects the threshold and performs an average of siegsiof shiftings of the signal (this further reduces npise

3.6.4 Accompanying these exercises is a data fiisy word 1.wav  which is a noisy version of the audio file
alfalfa_2.wav . Use wavelet-based denoising to denoise this signal. Whaeptage reduction of RMS do you
obtain?

3.6.5 Repeat problem 3.6.4, but for the audio fieisy word 2.wav.
3.6.6 Repeat problem 3.6.4, but for the audio fieisy word 3.wav.

Section 3.7

Example 3.7.1 For the signaf = (8, 16, 8, —8, 0, 16), compute itsl-level Daub 5/3 transform.
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Solution.Using the formulas for the analysis scaling vectp¥s, } and the equation;, = f - V), we obtain

a1 = (8,16,8,-8,0,16) - (. 2, 71,0,0,0) =12

4 = (8,16,8,-8,0,16) - (51, 1, 5. 1, <1, 0) =7

az = (8,16,8,-8,0,16) - (0,0, %1, %, g, i) =1
Similarly, we computel;, from d, = f - W, where{W} are the analysis wavelets:

dy = (8,16,8,-8,0,16) - (_71,1,_7170,0,0) =8

dy = (8,16,8,—8,0,16) - (0,0, _7171, _71,0) =12

ds = (8,16,8,-8,0,16) - (0,0,0,0,—1,1) = 16.
So thel-level Daub 5/3 transform iga! |d') = (12,7,18,—12,16).

Example 3.7.2 [Figure 3.15] As explained in the subsectioDaub 5/3 transform, multiple levels, we produce
V' by applying them-level inverse Daub 5/3 transform (sel&D 5/3 (2,2) as the transform type) to the signal
(0,...,0,1,0,...,0) where thel is in thek'" position,k = 1,..., N/2™; and we producéAV’k" by applying them-
level inverse Daub4 transform to the sigif@)...,0,1,0,...,0) where thel is in thek + N/2™ position,k = 1,...,
N/2m™.

3.7.f Compute the Daub 5/3 averaged signals A2, A3, andA* for the function
g(x) = 202*(1 — x)° cos 487z
over the interval0, 1] using1024 points.

3.7.Z What is the maximum error (over all points) between each ofatreraged signals in problem 3.7.1 and the
original signal.

3.7.3 Repeat problems 3.7.1 and 3.7.2 for the signal

g(x) = 2022 (1 — x)? cos 64z + 302%(1 — 2)* sin 307 .

3.7.4 Repeat problem 2.5.3, but use a Daub 5/3 wavelet seriesathstiea Haar series. Which function is best
approximated by a Daub 5/3 series? Why?

3.7.% For the following function, compute the minimum number afite needed to captuf®.99% of the energy in
a Daub 5/3 series for each level= 1,2, . .., 6 (using1024 points over the intervdD, 1]):

g(x) = 2%(1 — x)° cos 257

3.7.& Comparel-level Daub 5/3 trend values with(2z) over the interval0, 0.5], whereg(z) is defined by Equa-
tion (3.35). [Use2'* samples over the intervéd, 1] as in the text.]Note: By “compare” we mean determine the
maximum error.

3.7.7 Compare2-level Daub 5/3 trend values wit(4z) over the interval0, 0.25], whereg(z) is defined by Equa-
tion (3.35). Also compar8-level Daub 5/3 trend values wif(8x) over the interval0, 0.125]. [Use2'* samples over
the interval0, 1] as in the text.]
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Section 3.8

Example 3.8.1 [Figure 3.16] As explained in the subsectioDaub 5/3 transform, multiple levels, we produce
Vi by applying them-level inverse Daub 9/7 transform (selddtug 9/7 as the transform type) to the signal

(0,...,0,1,0,...,0) where thel is in thek'" position,k = 1,..., N/2™; and we producﬁ’; by applying them-
level inverse Daub4 transform to the sigif@)...,0,1,0,...,0) where thel is in thek + N/2™ position,k = 1,...,
N/2m,
3.8.f Compute the Daub 9/7 averaged signals A2, A3, andA* for the function

g(x) = 202*(1 — x)° cos 48mx:
over the interval0, 1] using1024 points.

3.8.Z What is the maximum error (over all points) between each ofatreraged signals in problem 3.8.1 and the
original signal.

3.8.3 Repeat problems 3.8.1 and 3.8.2 for the signal
g(x) = 2022 (1 — x)? cos 64z + 302%(1 — 2)* sin 307 .

3.8.4 Repeat problem 2.5.3, but use a Daub 9/7 wavelet seriesathstiea Haar series. Which function is best
approximated by a Daub 9/7 series? Why?

3.8.% For the following function, compute the minimum number afite needed to captuf®.99% of the energy in
a Daub 9/7 series for each level= 1,2, . .. ,6 (using1024 points over the intervdD, 1]):

g(x) = 22(1 — 2)% cos 25mz.

3.8.§ Comparel-level Daub 9/7 trend values witk'2g(2z) over the interval0, 0.5], whereg(z) is defined by
Equation (3.35). [Us@!* samples over the intervéd, 1] as in the text.]Note: By “compare” we mean determine the
maximum error.

3.8.7 Compare2-level Daub 9/7 trend values witlg(4z) over the intervall0, 0.25], whereg(z) is defined by
Equation (3.35). Also compatklevel Daub 5/3 trend values wi(8z) over the interval0, 0.125]. [Use2'* samples
over the interval0, 1] as in the text.]

Chapter 4

Section 4.1

Example 4.1.1 For the array
4 8 8 4
4 8 6 6
4 0 0 4
8 8 4 4

we compute itd-level Haar transform in two steps. First, we find thievel Haar transform along each row:

6V2 6vV2 —2v2 2v2
6v2 6v2 —2v2 0
2V2 22 2v2  —2V2
82 4v2 0 0
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Second, we find thé-level Haar transform of each column of this new array (indgxrom the bottom up):

0 0 0 =2
6 2 -2 2
12 12 -4 2
10 6 2 =2

which is thel-level Haar transform.
Example 4.1.2 [Figure 4.1] To graph Figure 4.1(a), you selddew 2 dimfrom the menu and plot the function

(y-x-c<=0)(x+y-c<=0)(x-y-c<=0)
(x+y+c>=0)(abs(y)<=b)(abs(x)<=b)
\c=12/5\b=8.5/5\Rem Use L = 4

over[—L, L] x [-L, L] usingL = 4. You then right-click on the graph and sel&taph stylewhich allows you to
replot the graph using th&rey (+/-) option. To get thel-level Coif6é transform in Figure 4.1(b), you plot a Coif6é
transform of the octagon graph in (a), and then chang&taph styleof the transform tasrey (+/-) with theLinLog
option selected and with a threshold.6600000001. The graphs in (c) and (d) are obtained in a similar way, excep
that2-level and3-level Coif6 transforms are performed, respectively.

Example 4.1.3 [Figure 4.2] To graph Figure 4.2(a), you seledew 2 dimfrom the File menu and then select
Points/128rom theEdit menu. You then graph the formula

del(x+64-2)del(y+32-4)

over[—L, L] x [-L, L] usingL = 64. That produces an image with all valugexcept one pixel of value (an element

of the standard basis fa28 by 128 matrices, which when an inverse Haar transform is appliedysres a Haar wavelet.
In fact, you perform &-levelinverseHaar transform, and right-click on the transform’s grapbiider to selecGraph
stylewhich allows you to replot the transform using Beey (+/-) option. That completes the construction of the image
in (). The images in Figures (b) to (d) were obtained in alaimvay through modifying the formula above (use the
formulas in the archiv8ookFigures.zip ).

4.1.1 For each of the following arrays, compute its 1-level Haansform.

2 4 2 0
20 2 2
(@ 4 0 2 4
6 8 12 12
13 3 1
2 5 5 2
(®) 47 7 4
2 7 7 2
31 2 2
1111
© 35 79
9 7 5 3
46 8 12
4 16 24 32
(d) 8 12 6 6
4 4 2 2
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4.1.2, For each of the arrays in problem 4.1.1, compute its 2-lewagrHransform.
4.1.3 ComputeWi @ W1, whereW1 is a Haar wavelet.
4.1.4 ComputeW1i ® Vi, whereW1 andV} are a Haar wavelet and Haar scaling signal, respectively.

415 ComputeVi ® Vi, Vi ® W2, W3 ® V2, andW3 ©® W3, whenV? andW7} are Daub 9/7 scaling signals
and Daub 9/7 wavelets, respectively.

4.1.6 Suppose a 1-level wavelet transform of an imégesh! = 0, a! = 0, andv! = 0 (i.e., all the values in these
sub-arrays are zero), and suppose tﬁ%t = 1 while all other values ofl' are zero. Show that the inverse transform
yieldsf = W1 ® W1. How does this result generalize?

Note. For subsequent examples and exercises, you may needitavnload images that are not installed by your
initial installation of F AWAV . These additional image files can be downloaded from thienages link at the F Awav
website.

Section 4.2

Example 4.2.1 [Figure 4.3] To generate the 4:1 compression in the figure you do the follgpwFirst, right-click on

an image square on the 2D-form and selaxd/Imageand load the PGM filbarb.pgm You then seledFile/Save op-
tions (imagesand enter @arget rateof 2 bpp. Since the original image &sbpp that represents a 4:1 compression ratio.
After saving a compressed image (right-click on the origimage, choos&ave/Imageand select .wc2 as file for-
mat), you then load this compressed fileéd/Imagewith » .wc2 as format) and that produces the reconstruction
shown in part (b) of Figure 4.3. The image in (c) was produgeglbtting the functiorgl - g2 wheregl stands for
graph 1 (the original image) arg® stands for graph 2 (the reconstruction of the 4:1 compragsichis third image is
displayed with aGraph styleof Grey (+/-) selected. Finally, the fourth graph in (d) was obtained bitriclicking on
the graph in (c), and then plottingabit histogram.

Example 4.2.2 [Figure 4.4] To generate the 16:1 compression in the figure you load thgedeg _head.pgm then
selectFile/Save options (imageahd enter aarget rateof 0.5 bpp. (Since the original image &bpp that represents a
16:1 compression ratio.) After saving a compressed imaght{click on the original image, choo&ave/Imageand
select- .wc2 as file format), you then load this compressed filegd/Imagewith * .wc2 as format) and that produces
the reconstruction shown in part (b) of Figure 4.4.

Example 4.2.3 [Figure 4.5] The image in (a) was obtained by loading the fiat.omp . To obtain the reconstruc-
tion of the 64:1 JPEG compression shown in (b) we used the@mogvAGE ANALYZERS. We opened the image file
boat.omp with Image Analyzer and then selecteféle format optionsrom theFile menu. Clicking on thdPEG
tab and entering kb for the compressed file size, we then saved the image* gggfile. Loading that compressed
*.jpg file produced the reconstruction shown in (b). The image Jw@s produced in a similar way, except that the
JPEG 2000tab was clicked and we enteréd625 for the % of compressed sizand theextra compression option
of mode=real was entered (that specifies that a Daub 9/7 transform is tséeé)u The image was then saved and
opened as &jp2 file. To obtain the image in (d) we used\WAV . After loading theboat.bomp image, we selected
Save options (imagefjom the file menu and enteréd125 for the bpp rate. We then saved the image (right-clicking
on the image and selectingad/Savgas a*.wc2 file. Loading that savetiwc2 file produced the image shown in (d).

Note: The PSNR values cited in the text were obtained by seled&imalysis/Norm Differencand then choosing
the optionPSNR For example, to obtain the PSNR between image 2 (Gr 2) angarB4Gr 3), where image 2 is the
original being compared with, you would entfor the Graph Lnumber and for the Graph 2number, select option
PSNR and click on theComputebutton. Unfortunately, RBWAV does not support thejp2 file format. Therefore, to
obtain PSNRs fot.jp2 reconstructions, you must first save a reconstructed (deessedy.jp2 image in a file format
that FAWAV can read (such asbmp).

3This program can be obtained as a free download fronstfavardink at the book’s websitewww.uwec.walkerjs/Primer



Examples and Exercises férPrimer on Wavelets:Chapter 4 20

4.2.1; Using FAWAV for the ASWDR compressions (formatwc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:pmssions of thdirfield.bmp image.

4.2.7 Using FAWAV for the ASWDR compressions (formatwc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:pmssions of thgoldhill.bmp image.

4.2.3 Using FAWAV for the ASWDR compressions (formatwc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:psrions of theeppers.bmp image.

4.2.4 Using FAWAV for the ASWDR compressions (formatwc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32:bmsuions of theelda.bmp image.

Section 4.3

Example 4.3.1 [Figure 4.6] To obtain the image in part (a) of Figure 4.6, we loaded thegena
fingerprint 1.bmp

and then right-clicked on a point with coordinat@g7, 158) within the image and selectetbom. Images (b) to (d)
were obtained by reconstructing 20:1 compressions by tB&JB2K, and ASWDR methods, respectively and then
zooming around the same coordinates as for image (a).

Example 4.3.2 [Figure 4.7] To obtain the image in part (a) of Figure 4.7, we loaded thegena
fingerprint 1.bmp

The image in (b) was obtained from reconstructing a 0.8 bpgVB& compression of the image in (a). To obtain
the images in (c) and (d) we zoomed around the coordinates 233) for images (a) and (b), respectivelote: If
PSNR is calculated for these zoomed images (by selegtvadysis/Norm differencand entering the graph numbers
for the zoomed images), we find that it3$.1 dB (which is lower than the PSNR for the full images, but stilbve the
rule-of-thumb value 080 dB).

4.3.F Using FAWAV for the ASWDR compressions (formatwc2 ) and IMAGE ANALYZER for the JPEG and J2K
compressions, find the PSNR values for 8:1, 16:1, and 32: pssrions of théingerprint 1.bmp image.

4.3.7 Inproblem 4.3.1, find PSNRs for zoomed images around thedouates(157, 233).
4.3.3 Repeat problem 4.3.1, but use the iméiggerprint_2.bmp

4.3.4 Using the imagdingerprint_2.bmp , repeat problem 4.3.1, but for zoomed images around thedzoor
nates(157, 233).

Section 4.4

Example 4.4.1 [Figure 4.10] To produce Figure 4.10(a) you load the imdgpat.pgm , selectTransform/Wavelet,
and then plot a 5-level Daub 9/7 wavelet transform of the imayou then selecGraph/Plotand plot the formula
abs(g2)>=64 whereg2 stands for the wavelet transform (graph numbdgrThat produces the image shown in (a),
the significance map for threshdd. To produce the image in (d), the approximate image recoctstd for threshold
64, you plot the graply2(abs(g2)>=64) and compute thé-level inverse Daub 9/7 wavelet transform of the image
produced by that plot. The images in (b), (e), (c), and (f)auced by obvious modifications of the methods just
described.

Example 4.4.2 [Table 4.4] To produce the PSNR values in ti¢DR (No AC)column for the B\RBARA IMAGE
portion of the table, we used the programaAGECOMPRESSORIocated in the main AvAV directory. Using the
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choiceGet Imageon theFile menu of MAGECOMPRESSORWe loaded the imagBarb.pgm and then performed
compressions and decompressions in the following way. rAftdectingCompressto performWDR (No AC)we
selected the optionBinary andWDR We also selected a Daub 9/7 transform withevels and entered for the Bit
rate (bpp)value. By clicking theCompressutton, we were then able to save to an 8:1 compressed fileelBgtag
Decompres$érom the file menu, we then decompressed this file and theotedlError measureso compute a PSNR
value between the original and reconstructed image. Tohgef6:1 and 32:1 PSNR values, d&l not do further
compressionsinstead, we decompressed thbpp compressed file at5 bpp (for 16:1) and).25 bpp (for 32:1). To
find the PSNR values foWDRwe proceeded as just described, except that we checked tioa épithmeticwhen
performing thel bpp compression. FOASWDR (No AC)you selectASWDRand Binary. For ASWDRyou select
ASWDRandArithmetic. The PSNR values for the®Ts IMAGE and X-RAY IMAGE parts of the table were computed
by repeating all this work for the imag@oat.pgm anddog_head.pgm respectively.

4.4.% Find the quantized transform for the wavelet transform gure 4.8(b), when the threshold2sAlso find the
analog of the last stage, half-threshold, array shown inréig.9(b) when the threshold2s

4.4.2 Find the quantized transform for the wavelet transform guFé 4.8(b), when the thresholdls Why is the
half-threshold, last stage approximation unnecessarynwhethreshold ig?

4.4.3 For the2-level wavelet transform shown in Figure 2, find the quamtiz@velet transforms for thresholds, 8,
and4.

-4 -4 -12-12| 3 -4 -2 6

10 10 10 1211 2 2 -4

16 20 (-10 8 |-9 -9 —-10 —-10

18 18|-10 8 | 8 6 6 8

Figure 2
2-level wavelet transform for Exercise 4.4.4.

4.4.4, Compute the wavelet difference reduction encoding (using®Is+, —, 0, 1) for the first pass (thresholib)
of the wavelet transform on the right of Figure 3, using thensorder on the left.

4.45 Compute the wavelet difference reduction encoding (usymglm®Is -+, —, 0, 1) for the Significance Pass and
Refinement Pass when the thresholf fer the wavelet transform shown in Figure 3(b).

4.4.6 Produce figures like Figure 4.10 for the imdg@rb.pgm .
4.4.7 Produce figures like Figure 4.10 for the imafyefield.pgm
4.4.8 \ferify all entries in Table 4.4.

4.4.9 Addanew partto Table 4.4, labelledN&ERPRINT, by computing PSNR values for each of the three compres-
sion ratios using each of the four compression methods &fintgerprint 1.pgm image.

4.4.10 Add anew part to Table 4.4, labelle& PPERS by computing PSNR values for each of the three compression
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32 31 30 29|55 61 62 64 -4 -4 -12-12| 3 -4 -2 6
25 26 27 28|54 56 60 63 10 10 10 1211 2 2 -4
24 23 22 21|50 53 57 59 -6 -6 -6 -8] 4 -2 5 -8

17 18 19 20|49 51 52 58 4 4 6 412 4 -1 =2

8 7 |14 16|36 37 44 45 4 4|5 =314 5 4 4

5 6 |13 15|35 38 43 46 6 6|-3 5[|[-9 -8 -8 -7

2 419 12|34 39 42 47 16 20 |-10 8 | -9 -9 —-10-10

1 3|10 11|33 40 41 48 18 18|-10 8 ([ 8 6 6 8

(a) Scan order (b) Wavelet transform

Figure 3
Data for Exercise 4.4.5. (ap-level scan order. (b)2-level wavelet transform.

ratios using each of the four compression methods fopéppers.pgm image.

Section 4.5

Example 4.5.1 [Figure 4.11] To produce Figure 4.11(a), we performe@-tevel Daub 9/7 wavelet transform of
the Boat.pgm image. We then zoomed in on, by right-clicking on the lower left corner of the waveletrisfiorm
image and selectingoom (and then clicking on th&oombutton). After that first zoom, we then right-clicked on
the lower right corner and zoomed once more. The resultisglayed image is». We then right-clicked on it and
selectedClip, which produced a clipped out imagewf only. In this new active window, we then graphed the function
(abs(gl)>=16) to produce an image where the white pixels are parent valga#isant at threshold6 (and the
black pixels are insignificant parents). We then se@@ph/Interpolate/Haaiin order to produce a new image that
is twice as large in each dimension, and each of the pixelst¢vaimd black) gives rise to 2 by 2 child matrix of
either all1 values (if the parent pixel is white) or &lvalues (if the parent pixel is black). This image displays th
locations (in white) of all child values in; whose parent values are significant at threshéldTo get an image of only
those children who are predicted to hewly significaniat thresholdl6, we return to the first window containing the
wavelet transform of thBoat.pgm image and clip out the; subimage. This is done by right-clicking on the wavelet
transform image and selectifiRestore full imagérom the popup menu, then right-clicking on the lower-rightner
and zooming once, and then clipping out this zoomed subimiagihe resulting new window, we graph the function
(32 > abs(gl) >= 16) and then copy this image (right-click on it and sel€opy graphfrom the popup menu).
Returning to the window containing the child valuesinwith significant parents, we right-click on its image andesél
Paste. Finally, we graphgl g2 and that produces a black and white version of the image iftqahange it to the
gray and white image displayed in tReimer, right-click on it and selecGraph styleand then select the optidarey
(+/-)]. To produce Figure 4.11(b) we return to the window with thpging of v, and plot(16>abs(gl)>= 8) to
produce a black and white image of the new significant valnes ijwhich one can then convert to a gray and white
image identical to (b) as we did above for (a)].

To get the percentage of correct predictionstoR2% given in the caption of Figure 4.11, we proceed as follows.
First, open a new window by selectifije/New 2-dim.Second, copy and paste the image for (a) into this new window,
then copy and paste the image for (b) into the window as watle@Analysis/Statisticend compute statistics for
graphsl and2. The fraction of energy of graphdivided by the energy of graghyields the required percentage.

For Figures (c) and (d), we did similar work. The only diffeces were that we performeddevel transform, and
to clip hs we zoomed twice in a row after right-clicking on the lowettledrner of the wavelet transform, then once on
the upper right corner; while to clih, we zoomed once on the lower left corner, followed by once arcthe upper
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right corner.

Example 4.5.2 [Figure 4.12] The image used waBarb.bmp and we applied &-level Daub 9/7 transform for the
WDR and ASWDR methods and tiheal mode for J2K. (See Example 4.4.2 for more details on usimgGE Com-
PRESSORand IMAGE ANALYZER) for doing these compressions.) The decompressed imagesalisaved asomp
files for loading into the BWAV program. Then each of thedmmp images, and the originadbmp image, were loaded
into a 2-dim form in AWAV . We then zoomed in on the same pixel for each of the four grapder the tip of Barb’s
nose).

Example 4.5.3 [Figure 4.13] These images were generated in the same way as the last exaxgdpt we zoomed
on a different pixel.

Example 4.5.4 In Figure 4 we illustrate the progressive reconstructiapprty of ASWDR. To produce these images
you seleciNew Image Processdrom theFile menu of RWAV . You then selecGet imagefrom theFile menu of the
Image Processowindow. By loading the imag@irfield.pgm you get the original (uncompressed) image shown
in (a). You then seledCompressrom the main menu, and selddtub 9/7for the wavelet and entdrfor the Bit rate
(bpp). Click on theGo button to save the image in compressed form bpp (8:1 compression). From that one file,
you can generate each of the decompressions in Figure 4.efectBecompresérom the main menu, and enter5

for the bit rate and then click on th&o button and select the compressed file for decompressiorhatnway, you
produce the image shown in (b). The images in (c) and (d) arergéed by decompressing this same compressed file,
using bit rates of).5 and1, respectively. Because we are only using one compressedhiellustrates progressive
reconstruction.

©

Figure 4
lllustration of Progressive Reconstruction. Each image in (b) tod) was computed from a single compressed file (saved &0
bpp). First, (b) is reconstructed, then (c), then (d).
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Example 4.5.5 [Table 4.5] The data shown in Table 4.5 was generated in the following Wéne percentages for
WINZIP were generated by using this prograto create an archive of compressionsBairb.pgm andBoat.pgm
anddog_head.bmp and reading off the compression percentages provided by2W¥. To generate the values for
ASWDR we used MAGECOMPRESSOR By selectingGet imagefrom the file menu of WVAGECOMPRESSORwe
loaded in an image file. When we loaded an image, we first reddtsidile size (obtained by right-clicking on it and
selectingPropertie3. We then selecte@ompresgrom the IMAGECOMPRESSORmMenNu and entered for the bit rate
(that indicates lossless compression because the origiagle uses bpp), and we also made sure that the wavelet
was Daub 5/3 and that the optioasthmeticfor Symbol encoding andSWDRor Method were checked. Clicking on
the Go button, we saved the image in a compressed format. When deessipg we again noted the file size of the
compressed file before we selecting it for decompressiomguihe uncompressed and compressed file sizes for each
image, we calculated the percentages shown in the ASWDR codiiithe table.

Example 4.5.6 [Figure 4.14] The decompressions were generated as follows. AiHeeld.pgm image was
opened using aimage Processowindow in FAWAV . Then we compressed at 200(L04 bpp as bit rate) using 4
level Daub 5/3 transform. After decompressing that congwedile we obtained the image in (b). To obtain the image
in (d) we right-clicked on the original image (on the left bEtwindow) and drew a rectangle enclosing the image that
we want to have losslessly compressed [the airplane at lefténdicated in (c)]. We then compressed the image again.
Upon decompression, the selected region of the originag@ma reconstructed exactly (while some error remains in
the rest of the reconstructed image).

45.F Produce images like the ones in Figure 4.11, but forBaeb.pgm image. Calculate the percentages of
correct predictors as well.

4.5.7 Produce images like the ones in Figure 4.11 forBobat.pgm image, except this time show childrenlof as
predictors of new significant values fat, and children o as predictors of new significant values fot. Calculate
the percentage of correct predictors as well.

453 Produce images like the ones in Figure 4.11, but forBaeb.pgm image. Calculate the percentages of
correct predictors as well.

45.4 Produce images like the ones in Figure 4.11, but in this casetheBarb.pgm image and show children
of h? as predictors of new significant values to, and children ofv3 as predictors of new significant values fof.
Calculate the percentage of correct predictors as well.

4.5.5% Create images like Figure 4 for theat.pgm image.
45.6 Create images like Figure 4 for tipeppers.pgm image.
45.F Create images like Figure 4 for tigeldhill.pgm image.

4.5.8 Add entries to Table 4.5 for theeppers.pgm andzelda.pgm andairfield.pgm images. Which of
the images (now six in number) shows the least compression?d&/kou think it compresses the least?

4.5.% Produce images like in Figure 4.14, but this time select smregf interest that contains the swept-wing aircraft
just to the left of center. How much savings in file size do yeti@ver sending a lossless compression of the entire
image?

45.16 Produce images like in Figure 4.14, but this time usedbg_head.bmp image and select a region of
interest that contains just the jaw region of the dog. How msgvings in file size do you get over sending a lossless
compression of the entire image?

4WINZIP is available fromhttp://www.winzip.com/
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Section 4.6

In the following example and exercises for section 4.6, wesater therate-distortioncurves (R-D curves) for J2K.
An R-D curve is a graph of PSNR versus bit-rate for a given imagg., bit-rate in increments 0f1 bpp along the
horizontal and PSNR in dBs along the vertical.

Example 4.6.1 In Figure 5 we show the R-D curve for J2K for ti®ldhill.bmp image, and for comparison the
R-D curve for ASWDR. To obtain the J2K compressions and PSNigave usedMAGE ANALYZER in conjunction
with FAWAV . (See Example 4.2.3 and the Note that follows it.) To obtaéhASWDR compressions and PSNR values
we used MAGECOMPRESSOR (Note: We used levels of Daub 9/7 transform and selected A8/VDRandArithmetic
coding options, and compressed ta app file, which we then decompressedat, 0.2, ..., 1.0 bpps, and selected
Error with PSNRoption to measure the PSNR for each decompression.)

38
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Figure 5: Rate-Distortion curves for ti@oldhill.bmp image.

4.6. Graph RD-curves for J2K and ASWDR using thigfield.bmp image.
4.6.7 Graph RD-curves for J2K and ASWDR using Barb.bmp image.
4.6.3 Graph RD-curves for J2K and ASWDR using tBeat.bmp image.
4.6.4 Graph RD-curves for J2K and ASWDR using teuntain.omp image.

4.6.5 Graph RD-curves for J2K and ASWDR using tReppers.omp image.
Section 4.7

Example 4.7.1 [Figure 4.15] To create the image in (a), the imag®at.omp was loaded into RWAV. The
noisy image in (b) was created as follows: random noise witk= 20 was added to the image by plotting the
graph ofgl+20rang(0) and then the resulting image was converted to an 8 bpp galg-smage by selecting
Graph/Quantize (8-bit)After deleting the second graph (the unquantized noisy @page created the image in (c) by
first performing &-level Daub 9/7 wavelet transform of the noisy image, and fhletting the function

g3(abs(g3)>= 20sqr(2log(512)))



Examples and Exercises férPrimer on Wavelets:Chapter 4 26

to produce a denoised transforfter deleting graph 3 (the noisy transformye then performed an inverselevel
Daub 9/7 transform on graph 3 to produce an (unquantized)isiethimage. Finally, we deleted graph 3 (the denoised
transform) and selecte@raph/Quantize (8-bitfo create an 8 bpp gray-scale image. This final image is the bas
threshold denoising shown in (c). To create the image inW#)deleted the unquantized denoising (graph 3 in the
window), and then selecte@raph/Denoise (wavelet)By clicking the Plot button (with graph 2 and 5 levels and a
Daub 9/7 wavelet specified), we performed a TAWS denoising®hbisy image (which is automatically quantized to
an 8-bit gray-scale image), producing the image shown in\{@ also computed PSNR values for each of the images
in (b) to (d), in comparison to the original image in (a). Weabed the following results: (i§2.2 dB, (c)27.0 dB, (d)

29.6 dB; which show that, for this example, TAWS provide.6 dB improvement over the base threshold method.

Example 4.7.2 [Table 4.6] We describe how to obtain the results in the third row, forBbatscase witho = 8. The
other rows of the table are obtained in a similar way. Firgtjeaded the imageoat.omp into FAWAV . We then added
noise withc = 8 to the image by plotting the gragggl. + 8rang(0) and then quantizing to 8 bpp (as explained in
the previous example). We then deleted graph 2 (the unaqeahthoisy image) and saved the noisy gray-scale image
to the file:

c:\fawavelimages\noisy boat 8.bmp

To obtain the Wiener denoising, usingAvlL AB, we executed the following three AtLAB commands:

I=imread('c:\fawave\images\noisy_boat_8.bmp’);
J=wiener2(l);
imwrite(J,’c:\fawave\images\noisy _boat 8 wiener.png "

The last command saves the wiener2 denoised imagpng dile (a simpler image format for MrL AB syntax) rather
than abmpfile. Loading the wiener2 denoised image intNRAY , we then computed a PSNR value for it in comparison
to the original image. That gave the result shown in the tabtierWiener(your results might differ slightly due to the
random nature of the noise). To obtain the results ufid®vSwe performed a TAWS denoising (as described in the
previous example) of the noisy image, and then computed &RR&iNie of the TAWS denoising in comparison to the
original image (again, your results might vary slightly daeandomness).

Remark As one can see from this last exampleAMLAB is very simple to operate, but also very powerful. Unfor-
tunately, it alsovery expensivéespecially if one has to also buy theAGE PROCESSINGand SGNAL PROCESSING
toolkits which are needed for the examples described irbiinik). Because of MrLAB’s cost, | decided to concentrate
on examples usingdwAv (which although less powerful than AL AB, has the advantage of being free).

Example 4.7.3 [Figure 4.16] The images in the figure were produced using the method thescin the previous
example (using th8arb.bmp image, andr = 16). If, in addition, we zoom in on the upper right corner of auf
images, then we obtain the images shown in Figure 6.

Example 4.7.4 The TAWS denoising in Figure 6(d) suffers from some annoyioga residuals (which appear as
small pixel-size blemishes). An improved TAWS denoisingapis available in BWAV . It is called TAWS-SPIN and
is described in detail in a paper of the authoFse-adapted wavelet shrinkagehich can be downloaded from

http://www.uwec.edu/walkerjs/media/TAWSsurv.pdf

Here we shall illustrate TAWS-SPIN. By selecting thenoise (wavele®ption, and selecting a Daub 9/7 wavelet, you
then check the box label&d/g. and select th&D option. That performs the TAWS-SPIN algorithm with the pastens
recommended in the paper. For instance, performing it ondisy Barbara image from the previous example, we obtain
the image shown in Figure 7(d). Compared to Figure 6(a)getien slight improvement in PSNR and the pixel-size
blemishes are gone.

Example 4.7.5 In Figure 8 we compare TAWS-SPIN with the Wiener2 method ferBbat.omp image contam-
inated withe = 32 Gaussian random noise (the noisy image is at the/Av webpage adoisy_boat_32.bmp ).
The TAWS-SPIN denoising shows a much higher PSNR than theaizémage and is much less free of noise artifacts.
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(c) wiener2 denoising 27.9 dB)

Figure 6
Zooms of two denoisings of Barbara image (PSNR values in parenthes).

Example 4.7.6 [Figure 4.18] We loaded the imag8TM_Si_111_a.bmp into FAWAV to produce the image in (a).
To denoise it, we performedflevel Daub 9/7 transform and then plotted the followingdtion

92 (x<c)(y<c)

+ g2(abs(92)<350)(1-(x<c)(y<c))(x<a)(y<a)
+ g2 (abs(gl)<)(1-(x<a)(y<a))

\c = -5+1/2°5 \a=-.5+1/2"4

\t =20

to process the transform. We then performed an invétewel Daub 9/7 transform on the processed transform to
produce the denoised image in (d). [The images in (b) andécg wroduced by zooming in on portions of the transform
of (a), after selectingsraph styleand choosing the optiorisnLog andGrey (+/-). For (b), we also entere2D for a
threshold.]

Example 4.7.7 [Figure 4.19] We loaded the imag8TM_Si_ 111 b.bmp into FAWAV to produce the image in (a).
To denoise it, we performedmlevel Daub 9/7 transform and then plotted the followingdtion

g2 (x<c)(y<c) + g2 (abs(g2)<t)(1-(x<c)(y<c))
\c = -5+1/2°4
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(c) wiener2 denoising 27.9 dB)

Figure 7
Zooms of two denoisings of Barbara image (PSNR values in parenthes).

\t = 30

to process the transform. We then performed an invétewel Daub 9/7 transform on the processed transform to
produce the denoised image in (b).

4.7.F Denoise the noisy imagéena_16.bomp andLena_24.bmp andLena_32.bmp (noisy images withr =
16, 24, 32, respectively) using TAWS, and TAWS-SPIN, and (if availabner2. Which method appears best (both
objectively, in terms of PSNR, and subjectively, in term&oiv it appears to you visually)?

4.7.7 Denoise the noisy imag&oldhill_16.bmp andGoldhill_24.bmp andGoldhill_32.bmp (noisy
images witho = 16, 24, 32, respectively) using TAWS, and TAWS-SPIN, and (if availabidigner2. Which method
appears best (both objectively, in terms of PSNR, and stizgdy; in terms of how it appears to you visually)?

4.7.3 Denoise the noisy imagd®oat_16.bmp andBoat_24.bmp andBoat_32.bmp (noisy images withr =
16,24, 32, respectively) using TAWS, and TAWS-SPIN, and (if availabdEner2. Which method appears best (both
objectively, in terms of PSNR, and subjectively, in term$iofv it appears to you visually)?

4.7.4 Denoise the noisy imagdéeppers_16.omp andPeppers_24.bmp andPeppers_32.bmp (noisy im-
ages witho = 16,24, 32, respectively) using TAWS, and TAWS-SPIN, and (if availabl&ener2. Which method
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(c) wiener2 denoising 25.0 dB) (d) TAWS-SPIN denoisingX7.4 dB)

Figure 8
Two denoisings of Boats image (PSNR values in parentheses).

appears best (both objectively, in terms of PSNR, and stib@dy;, in terms of how it appears to you visually)?

4.7.5% TheimageElaine.bmp has some noise (try zooming a few times on the center pixaledtsnore clearly).
Denoise this image using TAWS, and TAWS-SPIN, and (if avadatiener2. Which method appears best subjectively,
in terms of how it appears to you visually?

4.7.6  Try to improve the denoising of th8TM_Si_111 a.bmp image, obtaining a more sharply focused image
than the example given in the text (see Example 4.7.6).

4.7.F Try to improve the denoising of th8TM_Si_111 b.bmp image, obtaining a more sharply focused image
than the example given in the text (see Example 4.7.7).

Section 4.8

Example 4.8.1 [Figure 4.20] To produce (a) we first graphed an octagon shaped figure bgngidhe following
function

(y-x-c<=0)(x+y-c<=0)(x-y-c<=0)
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(x+y+c>=0)(abs(y)<=b)(abs(x)<=b)
\c=12/5\b=8.5/5

over the regiorj—4, 4] x [—4, 4] using128 as the choice foPoints. We then computed #&-level Coif6 transform and
plotted
10g2(1-(x<0)(y<0))

After changing the display style of the resulting graphag and setting a threshold 6f1 we obtained the image shown
in (a). To obtain the image in (b) we then performed an invérkevel Coif6 transform on image (a) and changed its
graph style taGrey (+/-).

Example 4.8.2 [Figure 4.21] To obtain the images in (a) and (b) we first loaded the intagese.pgm and that
gave us (a). We then performed devel Daub4 transform on this image and plotted the fumctio

g2+292(1-(x<0)(y<0))

to obtain a processed transform. We then performed an imvelesel Daub4 transform of this processed transform.
By quantizing to get aB-bit gray-scale image, we obtained the image (b).

Example 4.8.3 [Figure 4.22] The image in (a) was obtained by successively loading thgésgoldhill.pgm
andboat.pgm andairfield.pgm and peppers.pgm into a2-dim form. The image in (b) were obtained by
performing2-level Coif18 transforms of these images, copying and pgstiem into a single-dim form, and changing
their graph styles thin-Log 128 and choosing a threshold 4f

Example 4.8.4 [Table 4.7] We explain how the entries for the column labefetondvere obtained (the entries for
the other columns were obtained in a similar way). First wiaioled the denoised image of the noisy boats image (see
Example 4.7.1). We copied and pasted this denoised imaga inew2-dim form. We then producedlevel Coif18
transform of this denoised image, and displayed it with Hraes graph style as the images in Figure 4.21(b) discussed
in Example 4.8.2. The next step is to compute the rel&inerm differences between the trend subimages. To do that
for the Gr 1 entry (corresponding to the Goldhill image) wermed in on the lower left corner of the Coif18 transform
of the Goldhill image, so that just the trend subimage waplayed. We then clipped this subimage to obtain a new
2-dim form containing a display of just the trend subimaged sepeated this process with the denoised Boats image
transform. We then copied the trend subimage from the Gibidige and pasted it into the form containing the trend
subimage from the denoised Boats image. Finally, we condpau?enorm difference between graphs 1 and 2, with the
optionRelativeselected. That gave us the valua55 shown in the table. We then repeated this process with ther oth
images to get the remaining entridéote: The values you obtain may differ slightly from the ones répdin Table 4.7

due to the random nature of the additive noise.

4.8. Produce an image of the edgesRefppers.omp .

4.8.Z Edge enhance the imagathedra.pgm

4.8.3 Edge enhance the imageppers.bomp .

4.8.4 Add additional data to Table 4.7, using the imagaine.pgm
4.8.5 Add additional data to Table 4.7, using the imagda.pgm .

4.8.6 Construct a table analogous to Table 4.7, using a 32:1 casipreofLena.pgmin comparison to the four
images:Barb.bmp , Zelda.omp , Lena.pgm , andPeppers.omp .
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Chapter 5

Section 5.1

Example 5.1.1 [Figure 5.1] To create (a) we use@raph/Plotand plotted
2cos(4pi x) + 0.5sin(24pi x)
over the interva[—16, 16]. For (b) we then selecteBransform/Fourierand pressed thlot button. For (c) we opened
a new 1-D form, and plotted the function
(A + cos(24 pi x)/(1 + 4x°2)
over the interva[—16, 16], after which we obtained (d) by the method used to get (b).

Example 5.1.2 [Figure 5.2] To get (a) we plottediel(x) over the interval0, 1024] using1024 points. We then
computed al-level Coif12 inverse wavelet transform. That producedat pf the scaling signaV ;. We then chose
Transform/Fourierand selected the optiof®wer spand[0, L] — [— A, A], and unchecked the box labellPdriodic,
endpoint averagedp plot the spectrum oV}. For (b) we did the same work, except we first plottied(x-512)

Example 5.1.3 'We show in Figure 9 the graphs of the spectra of the CoiflragaignalVi, and waveletw1..
These spectra were produced as in Example 5.1.2, dsilfg-16)  anddel(x-512-16) . Notice how they match
the spectra oV] andW1 shown in Figure 5.2 in the Primer.

3 3
2 2
1 1
0 0
-1 —1

-0.5 —025 0 025 05 —05 —-0.25 0 0.25 0.5
(@) (b)

Figure 9
(a) Spectrum of Coif12 scaling signaV1,. (b) Spectrum of Coif12 waveletW1,.

5.1.% Produce a graph of
3sin(8mx) — 2 cos(16mx)

over the interva[—16, 16] using1024, and then produce a plot that displays the frequency confehts function.

5.1.7 Produce a graph of
2 cos(12mzx) + 8sin(24mx)

over the interva[—16, 16] using1024, and then produce a plot that displays the frequency confethts function.
5.1.F Plot spectra of the Coif12 scaling sigriék, and waveleW,,.

5.1.4 Plot spectra of the Coif18 scaling sigrik, and waveleW3,,.

5.1.5 Plot spectra of the Daub12 scaling sighd), and waveleW,.

5.1.6 Plot spectra of the Haar scaling signa}, and waveleW,,.
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Section 5.2

5.2.% Prove the linearity property of the DFT.

5.2.2, Prove the periodicity property of the DFT.

5.2.3 Prove the inversion property of the DFT.

5.2.4 Prove Parseval's Equality for the DFT.

5.2.5 Find thez-transform off = (1,1, 1,1). What are its roots?

5.2.6 Find thez-transform off = (1,0,1,0,1,0,1,0). What are its roots?
5.2.7 Prove thatl o 7,, = Ty+.m- Also prove thatl_;, = 7,7

Section 5.3

Example 5.3.1 [Figure 5.3] To produce the graph in (a) we first plotted
(1 + cos(24 pi x))/(1 + 4X72)

over the interva[—16, 16] using 1024 points. We then selectedries/Wavelednd chose a-level Coif12 wavelet with
option Ascending termand entere@12 for the number of terms. Plotting that series produced thplyshown in (a).
To produce the graph in (b) we performed a Fourier transfoirthe graph in (a). We obtained the graph in (c) by
subtracting the graph in (a) from the original function'agin. The graph in (d) is the Fourier transform of the graph in

(©).

Example 5.3.2 [Figure 5.4] To obtain the graphs in (a) we computed power spectra ofrgcalignalsvV# and
multiplied each power spectrum iy * for k = 1to k = 4. For example, to ploV$ we grapheddel(x) over
[0, 1024] using1024 points, and then computed3aevel inverse Coifl2 transform. Plotting the Power spgotand
multiplying by 22 produced the 3rd graph from the top in (a). Similar work wasedto produce the graphs in (b)
except that wavelet®* were used. For instance, to plot the graptVeéf we plotteddel(x-128) over [0, 1024]
using1024 points and then computed an inveBskevel Coifl2 transform.

5.3.£ In Figure 10(a) we show the graph of the function

1+ cos(16mz) 1+sin(24wx) 1 — cos(8wz)
1+ 42 14+4(x—8)2  1+4(x+38)?

over the interval[—16, 16] using 1024 points, and in (b) we show the graph of its DFT. Reproduceetlyggaphs and
identify the portions of the DFT graph that correspond tmsfarms of the3-level Coif12 averaged signal?, and
detail signald?3, D?, D',

5.3.Z Graph the function

24: 1+ 4cos(2n3 - 28 1x)

1+ 4(z — (—40 + 16k))?

k=1

over the interval—32, 32] using4096 points, and plot its DFT. For a Coifl2 wavelet, identify whiportions of the
DFT correspond to transforms of the signal$, D*, D3, D2, D!.

5.3.3 Prove formula (5.29).
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(@) (b)

Figure 10
(a) Graph of function from Exercise 5.3.1. (b) DFT of that funcion.

Section 5.4

Example 5.4.1 [Figure 5.5] The graph of the top signal was obtained by plotting

sumk(100u(u-.1)(u+.2)(-.2<u<.1)(abs(k-1)>.5))
+.1sin(12pi v)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x-2

over the interval—5, 5] using1024 points. The middle signal was obtained by then plotting
100u(u-.1)(u+.2)(-.2<u<.1) \u=x

over the same interval with the same number of points. Tamltie bottom graph we selecté€bnvolveandPair Cor-
relation, and entere@ for Graph 1and1 for Graph 2with the Normalizeoption selected, and after plotting this nor-
malized correlation, we then plotted the graplydtx)(g3(x)>.9) to show those correlation values that exceeded
0.9.

5.4. Compute a graph showing the values of the normalized cdioelaf the following two graphs, over the
interval [—5, 5] using1024 points:

g: 2(-3 <z < —2)+ (1 —abs(z))(abs(z) < 1) - 183 <z < 4)

f: 2(-5b <z <.b)

Explain why the position of the maximum df for the normalized correlation occurs where it does, and tiiey
minimum of —1 occurs where it does.

5.4.7 Compute a graph showing the values that exd@6d of the normalized correlation of the following two
graphs, over the intervél-5, 5] using1024 points:

g: sumk(100u(u — .1)(u + .2)(—.2 < u < .1)(abs(k — 1) > .5)) + .1 cos(14mv)(—.2 < v < .1)
\u=2z—2k\k=-2,2\v=x2—-2

f: 100u(u — . 1)(u+ 2) (-2 <u< .l)\u==z
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Section 5.5

Example 5.5.1 [Figure 5.6] To produce this figure you first load the imaBeéomp and then the imageéQW.bmp
and that displays Gr 1 and Gr 2. To produce Gr 3 you s&ecivolveandPair correlationand check the box entitled
Normalize.You also enteil for Graph 1, and for Graph 2. After plotting the normalized correlation as third graph
and then plottingdg3 > .9) you obtain the tiny white pixel at the center shown in Gr 3 ie figure. To obtain the
image in Gr 4 you proceed in a similar way, except you emtar Graph 1 and for Graph 2 when computing the
normalized correlation.

Example 5.5.2 [Figure 5.7] To obtain the graphs in (a) you load successively the im&jeime face.omp
boat.omp , Elaine.omp andZelda.bomp . To obtain the images in (b) you perform normalized corretet with
Elaine_face.bmp as Graph 1, and each of the images in (a) as Graph 2, and yoplaisbhe values exceedirg9
for each of these normalized correlations.

Example 5.5.3 [Figure 5.8] To obtain the graphs in (a) you proceed as follows. Perfoimexel Coifl2 transform
of Elaine_face.bmp , then graplg2(1-(x<0)(y<0)) and then inverse transform on Gr 3 to @t. You then
plot

g4((x2 + y2) < c2) \c = 0.15

to remove extraneous edges at the boundary of the disc norgagédges of Elaine’s face. Then repeat this work
(without the boundary removal step) for each of the imdgest.omp , Elaine.omp , andZelda.bmp , copying
and pasting th®'! images into the form containing the face versioddf, and computing normalized correlations with
thresholding a0.9.

5.5. Do a normalized correlation, and retain only values exaepdi9, for the image2DCorr_a.bmp of the
letter a within the portion of text in the imageDCorr_text.bmp . Verify that all instances of the lettarand their
positions are detected correctly.

5.5.7 Do anormalized correlation, and retain only values excesld, for the image2DCorr_u.bmp of the letter

u within the portion of text in the imag2DCorr_text.omp . Verify that all instances of the letterof the same size
and their positions are detected corredinte: Some larger size versions ofare not detected. This provides evidence
that our brains use much more sophisticated methods ofpaiatching, valid across a range of sizes, not just a single
fixed size.

5.5.3 In the previous two exercises, the text and the individuste were white on a black background. Explain
how to handle letter detection if the text and letter are tbtdlck on a white background. Do you see any relation to this
problem and vision?

5.5.4 Apply the edge correlation method to detecting the presef@arb_face within the imageBarb.bmp
and its lack of presence within the imagéslda.omp andElaine.bmp

5.5.5 Repeat the previous exercise, but use edge correlatiops bashe3™ level Coif12 trends for the images.

Section 5.6

5.6.1 Show that forP() = ¢'™ cos 76, we obtain the Haar scaling numbers = o, = 1/1/2 and wavelet numbers
ﬂlzl/\/ﬁ552:71/\/§-

5.6.2 Show that (5.67) implies (5.68).

5.6.3 Use the method of this section to derive the Daub6 scalingoeusnand wavelet numbers.

5.6.4 Generalize the method of this section to the biorthogonse.ca
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Section 5.7

Example 5.7.1 [Figure 5.9] To produce (a) we plotted the function

400002 iy 10247t + 40005 o5 20487t
+ e 1000=0D" (4in 5127t — cos 3072rt)

over the intervall0, 1] using 8192 points. The DFT in (b) was then produced by choosimgnsform/Fourierand
selecting[0,L]->[-A,A] for Interval Type.To produce (c) we selectehalysis/Spectrograpttom the window
containing the graph in (a), and when the spectrogram winaimned we then plotted the spectrogram ditackman
specified as the filtér. We produced (d) by selectingonefor the filter in the spectrogram (this specifies a Boxcar
window).

Example 5.7.2 [Figure 5.10] The graph in (a) was created by opening a new 1D-form and tghtielicking on the
graph region followed by selection bbad/Sound fileWe then selected the sound filete_clip.wav . The graph

in (b) was created by plotting several shifts of the Blackmamdow defined in the Primer, and (c) was obtained by
multiplying the signal in (a) by the central window displalie (b).

Example 5.7.3 [Figure 5.11] This figure was obtained by plotting the formulas for the Hagrand Blackman
window functions, using\ = 1, over the interval—0.5, 0.5] using1024 points.

5.7.% Plot the following function
e~400(t=0-2)” iy 90487t + e=400(t=0-5)" (s 5197t
+ e 4000=01)% (gin 10247t — cos 3072rrt)

over the interval0, 1] using8192 points and then compute its Hanning and Blackman windowedtspgrams. Do you
observe any differences?

5.7.Z Plot the following function
e~ 400(1=02)% iy 5127t 4 € 400(=0-5)° (05 20487t
+ e 400(=0-1)% (4ipy 5127t + 0.5 cos 10247t — cos 30727t)
over the interval0, 1] using8192 points and then compute its Hanning and Blackman windowedtspgrams.
5.7.3 Load the signafjreasy.wav and compute its Blackman windowed spectrogram.

5.7.4 Load the signaChong’s ’Bait’.wav and compute its Blackman windowed spectrogram.
Section 5.8

Example 5.8.1 [Figure 5.12] The spectrogram in (a) was generated by loading the soungidife_clip.wav
and then computing a Blackman windowed spectrogram. Fowéoplotted the formulain[8192(pi/3)x"3]
over the interval0, 1] using8192 points and then computed a Blackman windowed spectrogram.

Example 5.8.2 [Figure 5.13] The spectrum in (a) was computed in the following way. Ingpectrogranwindow
containing the Blackman windowed spectrogram of the piaotes(see last example), we selectdew and then
choseView cursor coordinatesiVe then moved the mouse cursor over the spectrogram untiptbéthe mouse cursor
displayed).6 as its first coordinate, and then right-clicked and chdestical slicefrom the popup menu. That produced
the real and imaginary parts of the FFT corresponding to ¢ntcal slice along = 0.6 in the spectrogram. To get the
spectrum’s plot, we graphed the function

5A time-domain filter is usually calledaindow;we used the terrwindowin the Primer.
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sar(gl(x)°2 + g2(x)°2)

and then clipped out graph 3, and changed the display stylineswith the X andY ranges shown in the figure.
To produce (b) we used the same steps, except that we rigkédlon the spectrogram when the first coordinate was
1.115.

Example 5.8.2 [Figure 5.14] The spectrogram in this figure was created by juxtaposingpeatrograms. We began
by loading the sound filérebird_clip2.wav , which loaded into audio editorwindow. We then left-clicked
at about a quarter of the way from the left end of the signaifatit54000 for theLine 1reading) to create a beginning
clip-line, followed by a click toward the middle of the signia create a right-click line. We then right-clicked on the
selected region and cho&#ip. By clicking on theAnalyzebutton we opened the clipped signal within a new 1D-form
and then computed a Blackman windowed spectrogram. Thidrsgeam is the left half of the spectrogram shown in
the figure. To produce the right half, we right-clicked on tight clip line and selecteiove clip region.The clipped
signal shown in the small box on the right of thadio editoris automatically updated with this new clipping. We then
clicked theAnalyzebutton and created a Blackman windowed spectrogram, whittei right half of the spectrogram
shown in the figure.

Example 5.8.3 [Figure 5.15] To create the spectrogram in (a) we loaded the sound file
Chinese_folk_Music.wav

and computed a Blackman windowed spectrogram. The zoomisgawn in (b) was computed in the following way
(the explanation of the mathematics underlying the foltayvprocedures is discussed in sections 6.3 and 6.4 of the
Primer). From the menu for the original sound signal we sete&nalysisand choseScalogram.In the scalogram
window that opens, we chose to computéabor (complexkcalogram, using the following settings:

Octaves: 2 Voices: 128

Width: 0.25 Freq.: 125

and then clicked on th@lot button to compute the scalogram. Once the scalogram wategjote then selected
View/Display styleand selectetlog (global)for the Magnitudesetting.

Example 5.8.4 [Figure 5.16] These spectrograms were created by loading the sound$ijgsy_song.wav  and
oriole_song.wav and computing Blackman windowed spectrograms.

5.8. Analyze the oriole’s song from the recordingole_song.wav

5.8.Z Use AUDACITY to create a spectrogram of the passage from the classicaé&hfolk song recorded in the
file Happiness_clip.wav , and use the Multiresolution Principle to analyze its malsgualities. Details on how
to use AUDACITY can be obtained by selecting the link

Document on usinfAWAVand Audacity

available at the following website

http://www.uwec.edu/walkerjs/tfam/
5.8.3 Analyze the passage from the sdBgenos Airesn the recordingBA_passage.wav .

Section 5.9

Example 5.9.1 [Figure 5.16] To create (a) we loaded the sound fildole_whistle.wav and performed a
Blackman windowed spectrogram. We create (b) by sele&iraph/Plotfrom the spectrogram window where (a) is
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displayed, and then clicking on th®ad button to load the formula filsynthetic_oriole_whistle.uf2 , and
then plotting this formula. (The sound signal correspogdanthis spectrogram is generated by seledBmngph/Inverse
It should be played at the same sampling rate and bit-rateeagriole whistle.) For (c), you seleGraph/Restorérom
the spectrogram menu, then proceed as for (b) except thailgbthe formula from the file:

a_synthetic_bird_song.uf2

5.9. Model the spectrogram dfouse_wren_chirp.wav and compute a synthesized mimic of this bird call.

5.9.Z Compute a spectrogram of the recorded sowadbler.wav . Analyze this spectrogram for its musical
gualities using the principles discussed in the previooti@e

5.9.F Model the spectrogram efarbler.wav  and compute a synthesized mimic of this bird song.
5.9.4£ Selectively amplify the harp glissando in the sigadginal clip from Firebird Suite.wav

5.9.5 Using the Multiresolution Principle, synthesize your owrdisong and/or musical passage.
Section 5.10

Example 5.10.1 [Figure 5.18] To perform the denoising illustrated in the figure we proaskds follows. First, we
graphed the following multiple of the chirp formula giventire text:

¢ sin(8192 (pi/3)x"3) \c¢c = 7/.695750610959927

over the intervall0, 1] using 8192 points. The constant is chosen so that the standard deviation of the values of
this signal is7 (that is the standard deviation set by Donoho for the testatighe created, which are widely used
in benchmarking denoising algorithms). After graphingtbhirp signal, we then added Gaussian random noise of
standard deviatioa = 1 to it by plotting the formula

¢ sin(8192 (pi/3)x"3) + rang(0)
\c = 7/.695750610959927

The MSE for the noisy chirp compared to the original chirfhirt calculated by choosiméprm differencend selecting
the Power normoption with power2. That gives the Root Mean Square (RMS) error, the MSE is thareqof that
RMS value.

The Blackman windowed spectrogram in (a) was then creatad this noisy chirp signal. Its thresholded spectro-
gram in (b) was created by choosigaph/Denoisdrom the spectrogram menu and plotting the formula thet/&/
automatically supplies. [The theory that explains how ttertoising formula is created is discussed in the p&eer
noising Gabor transformgreference [9] in Chapter 5 of the Primer).] To get the MSEefor denoising, you then
selectGraph/Invertfrom the spectrogram menu and copy and paste the resulgnglsh to the window containing the
original chirp signal, and square the RMS error (computediéen graphs 1 and 3).

Example 5.10.2 [Figure 5.19] To create the graph shown in (a) you plot the formulemps.ufl , available from
theExercise_formulas.zip archive from the Primer webpage. The plotting is done oweirterval[0, 1] using
8192 points. You then calculate that signal’s standard deviafihich my computer gave ds53952824076645) and
plot the following signal

7g1(x)/c \c = 1.53952824076645

After removing graph 1 (right-click on the graph region artestRemove grapland specify graph 1 for removal), you
are left with the plot of Donoho’s test functidumpsshown in (a). The noisy signal in (b) is plotted as in the prasi
example (usinggl(x)+rang(0) ). The denoising in (c) is obtained by selecti@gaph and thenDenoise (Gabor)
and specifying grapR. A spectrogram window opens up with a formula for plotting thresholded spectrogram
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(it is not automatically computed because you are able toifjntite formula for more advanced denoising such as
garotte shrinkage, see Example 5.10.4 below). After pigtthe thresholded spectrogram and seledBngph/Invert
you obtain the denoised signal shown in (c). The MSEs weregpabedl as described in the previous example.

Example 5.10.3 [Figure 5.20] To produce the spectrograms in Figure 5.20 you load the sfilend
oriole_song.wav

and compute its Blackman windowed Gabor transform to get(a) then seleg&raph/Denoiséo plot the thresholded
spectrogram (b). As in previous examples, the denoisedbkwas produced by then selecti@gaph/Invert We then
saved this signal asriole_song_denoised.wav by right-clicking on it and selectin§ave/Sound file

Example 5.10.4 [Figure 5.21] To obtain the spectrogram in (a) you load the audiorfiésy thrush.wav and
plot a Blackman windowed spectrogram. If you selécaph/Denoisehen the automatically generated formula for
thresholding is

(91)(91 > ¢
\c=.55 *sqr(2log(1024)) % (187.910060820749)  *sqr(1024)

If you plot this formula and then seleGraph/Invertyou will produce a denoising that suffers from high-pitclagtifacts
and low-pitch rumbling and thumping. The garotte shrinkalgewn in (b) is performed by selectif@graph/Restorg
followed by Graph/Denoiseand then modifying the automatically generated functmalitain the following formula:

(91)(91 > c)(1-(c/g1)°2)
\c=.55 *sqr(2l0g(1024))  *(187.910060820749)  *sqr(1024)

Plotting this formula produces (b). If you then sel€taph/Invertyou will create a sound signal that no longer suffers
from high-pitched artifacts, but still has low-pitch ruritig and thumping. These latter noises are removed by a high-
pass filtering, illustrated in (c). To obtain the spectrogra (c), you selecGraph/Restordrom the spectrogram’s
menu, followed byGraph/DenoiseYou then modify the automatically generated formula tcaobt

(91)(91 > c)(1-(c/g1)"2)(y > 1300)
\c=.55 sqr(2log(1024))  *(187.910060820749)  *sqr(1024)

Plotting this formula produces (c). If you then sel&@aph/Invertyou will create a sound signal that is relatively
noise-free, no longer suffering from either high-pitchetifacts or low-pitch rumbling and thumping.

Example 5.10.5 In this example we consider a challenging denoising of aaedlo signal. The noisy recording is
the audio file:

Chinese_Folk_Music.wav

We show its Blackman windowed spectrogram in Figure 11¢a)thfresholded spectrogram, is graphed by plotting the
following function (obtained by selectingraph/Denoisdrom the spectrogram menu):

(91)(91 > ¢
\c=.55 *sqr(2log(1024)) % (355.195793541264)  *sqr(1024)

See Figure 11(b). All of the noise has been removed. Unfatiip however, some signal values are lost (especially in
the higher frequencies). When the denoised signal obtanogd the thresholded Gabor transform is played it sounds
“muddy” due to loss of some of the high frequency content efrifusic.

To fix this problem, which is due to the rather high estimatthefstandard deviatiow (=~ 355), we need a different
estimate of the standard deviation. We find this new estimafellows. By examining the spectrogram in Figure 11(a)
we see that there is a region of the time-frequency planeyisioFigure 11(c), that is mostly noise. To obtain the plot
in Figure 11(c) we used the following function:

g1(5.302<x<5.746)(2680<y<3263)



Examples and Exercises férPrimer on Wavelets:Chapter 5 39

8512

I ~ 4134

(@) (b)

s512_
4124

. 2756

1378

o0
0 1486 2972 4458 5944

NI BT L
o ;m-

(© (d)

Figure 11
Denoising Chinese folk music. (a) Noisy signal spectrogram. (b) Sgteogram of thresholded Gabor transform. (c) Small
region of just noise from (a). (d) Garrote shrinkage applied to Gator transform for (a) with a new standard deviation.

After performing an inverse Gabor transform, we then chdrige X -range t05.302, 5.746 and calculated the standard
deviation of the noisy signal. We got a new estimate of thedsted deviationo =~ 93. Returning to the spectrogram
window and restoring the noisy spectrogram of the full sigwa then plotted the following garotte shrinkage

(91)(91 > c)(1-(c/g1)°2)
\c=.55 =sqr(2log(1024)) *(93) *sqr(1024)

which makes use of this new standard deviation. The regyftiot is shown in Figure 11(d). Although this spectrogram
appears noisy, when it is inverted the resulting denoisgth$sounds noise-free, and more sharply defined due ta bette
preservation of the high-frequency content of the music.h@lee saved this denoised audio file as

denoised_Chinese_music_garotte.wav

5.10.f Denoise the noisy recordirghinese_Folk_Song_Clip_b.wav
5.10.2 Denoise the noisy recordirigan’s 'Bait’.wav

5.10.3 Denoise the noisy recordingpbolink.wav . [Note: garotte shrinkage will produceRun error due to
division by0 in (g1>c)(1-(c/gl)"2) . Use the modified expressiggl>c)(1-(c/(gl+(gl<c/2))2) to
avoid division by0.]
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Chapter 6

Section 6.1

Example 6.1.1 In this example we find the-level Walsh transform of the the signfal= (-2, —4,2,6, 8,4, 4, 2).
First, al-level Haar transform is computed:

(al|d!) = (-3v2,4v2,6v2,3v2 | V2, ~2v/2,2V/2, V2).
Then we computé-level Haar transforms of botl' andd', obtaining
(1,9] —7,3] —1,3]3,1)
which is the2-level Walsh transform of .

Example 6.1.2 [Other wavelet packet transforms] Wavelet packet transforms in general are defined as sigmeatls t
result at the end nodes of a tree-diagram describing apiplicaof a trend calculatiom and a fluctuation calculatiof.
For example, consider the following tree diagram (wheresgmbole indicates an end node signal):

v N

1 dl

VN VN

N N

which can also be expressed more succinctly as
(TTT(E) |FTT(f) |FT(f) | TTF(f) | FTF(f) | FF(f)) .

For instance, if = (—2,—4,2,6,8,4,4,6) then this wavelet packet transform is computed as followth(the end-
node signals given in bold-face):

(_25 _47 27 6a 87 47 47 6)

v N

(—3v2,4v/2,6V/2,3V/2) (V2,-2v2,2v2,V?2)
VN VN
(1,9) (—-17.3) (-1,3) (3,1)

VN VN

(5v2)  (-4v2) (vV2)  (-2v2)
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and we can write this wavelet packet transformed signal as:

(5vV2| —4v2| —7,3|V2| —2v2|3,1).

Example 6.1.3 In this example we show how to us@WAV to compute a wavelet packet series of the kind described
in the text, where each subsignal is transformed at eves},lar a Coif30 wavelet. Suppose that our signal is obtained
from plotting the formula

40sin(12rz?)

over the interval0, 4] using4096 points. To compute &-level Coif30 wavelet packet series, transforming eaclsigub
nal at every level, we seleSeriesandWavelet Packednd then specify levels and a Coif30 wavelet. If we also select
Energy fractionand specify0.9999, then AWAV uses250 transform values (which it reports a850 coefficients”) to
obtain a wavelet packet approximation of the signal thatuwrags99.99% of the signal’s energy. To see the advantage
for this signal of computing a wavelet packet series, if wepate a6-level Coif30 wavelet series with energy fraction
0.9999, then FAWAV uses397 transform values, a far greater number.

6.1.L Givenf = (2,4,8,6,2,4,6,8), find its 2-level Walsh transform.
6.1.2 Givenf = (10,8,4,—2,4,8,10,18), find its 3-level Walsh transform.
6.1.3 Given the signal obtained by plotting

sin(247x?) — sin(1272?)

over [0, 2] using4096 points. How many transform values (coefficients) are neédeds-level Coif30 wavelet packet
series to captur@9.99% of the signal’s energy? How many for a Coif30 wavelet series?

6.1.4 Given the signal obtained by plotting
sin[247(2 — x)?] 4 4sin(1272?)

over|[0, 2] using4096 points. How many transform values (coefficients) are neéded-level Coif30 wavelet packet
series to captur@9.99% of the signal’s energy? How many for a Coif30 wavelet series?

6.1.5 Given the signal
f=1(2,4,6,8,16,20,22,22).

Compute its wavelet packet transform defined by
(TT(f), TFT(f),FFT(f), TF(f), TFF(f), FFF(f))
and draw the tree diagram corresponding to this transform.

6.1.6 Given the signal
f=1(2,0,4,4,4,2,4,6,8,12,12,10,8,8,8,6).

Compute its wavelet packet transform defined by the follgwransforms applied tb
TTT, TFTT,FFTT,FT, TTF, TFTF,FFTF, TFF, FFF

and draw the tree diagram corresponding to this waveletgtdcknsform.
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Section 6.2

Example 6.2.1 [Table 6.1] The values in the first row were obtained as follows. We begatoéding the sound

file greasy.wav and then selecte8eries/WaveletAfter specifyingd levels, and a Coif18 wavelet, and choosing the
Thresholdoption, we then clicked on thiedit Settingsbutton. In the edit window that opens we selectedhatiple
Thresholdsoption and entered/2°7:1/2°5 for the thresholds. After clickind\pply we then plotted the wavelet
series. The entrieSig. valuesand Bpp were then read off from the report of the number of coeffideantd the bits
per point, respectively. The RMS error was obtained fronectalg Analysis/Norm differencand using the default
choices (Normalized, absolute Power 2 norm). Similar woasdone to get the second row’s values, except that we
used the choic&eries/Wavelet packeNote: your results may differ slightly from ours due to ditfaces in floating
point arithmetic for various CPUs.

Example 6.2.2 [Table 6.2] To obtain the data in the first row of the table, we loaded thageBarb.bmp and
performed ad-level Daub 9/7 wavelet transform. We then right-clickedtbe transform image and select&dve
graph/Graph. We then saved our transform data to a Blarb_4_tr.fb2 in the Data subdirectory of the RVAV
directory. After that, we selectdthage compression workshéom theGraphmenu, and proceeded as follows (Note:
we go through this procedure of usihgage compression workshégr consistency, since it is the only way thatWwav

has for performing wavelet packet compression.). Withalthage compression workshepndow we specified for

the number of levels, a5 for the target bpp rate, and then clicked the button labéllecbde Transforrand selected
the file Barb_4_tr.fb2 for encoding. TheSig. valuesentry was then read off from the report generated by the
encoding process when it completed its encoding at the fatenost exactly the target rate 0f5 bpp. We then clicked
on the buttorDecode Transfornand selected the filBarb_4 tr.wic from the Compress/Dataubdirectory of the
FAWAV directory. (Note: when selecting this file, you might firghi-click on it and check it®ropertiesto verify
that it has a file size of6 kB, which is a 16:1 compression of t2&6 kB file Barb.bmp .) The decoded transform
was saved to the filBarb_4 tr _quant.fb2 in the Compress/Dataubdirectory. Finally, we returned to the 2D-
form containing the images and right-clicked on one of thages, followed by selectingoad/Graphand loaded
the fileBarb_4_tr_quant.fb2 . After inverse transforming this image, and 8-bit quantizthe resulting image
[by deleting one of the transform images, and then usngph/Quantize (8-bit) we had our decompressed image.
We obtained the PSNR by selectiAgalysis/Norm differencand choosing th® SNRoption. The second row of the
table was obtained by repeating this work, but using a wayeleket transform and its inverse. The third and fourth
rows were obtained in the same way as the first and second eswaspt thad.25 bpp was used as the target rate for
compression.

Example 6.2.3 [Figure 6.1] The images in the Figure were obtained during the proceseeating the decompres-
sions of the 16:1 compressions Barb.bomp described in the previous example, and zooming in twice ogg&on
around the fold in Barb’s scarf (using the same center piakies for each zooming). The PSNRs computedAy4/

are obtained just for the region selected in the zooms (ubmfjrst specified graph to determine the zoomed region, so
be sure that you have zoomed on exactly the same pixel cetedifor each image).

Example 6.2.4 [Figure 6.2] The image in (a) was created by performing-kevel Daub 9/7 transform of the image
Barb.bmp and then plotting

g2 a + 950(abs(g2)>8)(1-a)
+ 475(abs(g2)<8)(1-a)
\a = (x<c)(y<c)\c¢ = -5 + 1/2°2

The valued50 is the maximum magnitude for the transformed image (obthirsengAnalysis/Statistigs so this formula
displays the brightest white for transform values that e’&in magnitude, and a dull gray for those which do not, and
it leaves the trend image values unchanged from their aig@lues. The image in (b) was produced in the same way,
except a wavelet packet transform was used.

6.2.£ Compute5-level Coif30 compressions afalfa_22050.wav using both wavelet and wavelet packet
transforms, and complete a table of data similar to Table 6dn you hear any differences between the compressed
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signals and the original?

6.2.7 Computes-level Coif30 compressions afenoised_thrush.wav using both wavelet and wavelet packet
transforms, and complete a table of data similar to Table 6.1

6.2.3 Compute5-level Coif30 compressions d@all(Jim).wav using both wavelet and wavelet packet trans-
forms, and complete a table of data similar to Table 6.1.

6.2.4 The sound filenoisy_osprey_clip.wav is a noisy version obsprey_clip.wav . Compute RMS
errors for threshold denoisings with both wavelet and wetyehcket transforms. How much reduction of RMS error is
obtained through this denoising? Which denoising soundshand why?

6.2.5 LoadCall(Jim).wav and simulate a noisy version by plotting
gl(x) + rang(0)

Perform threshold denoising using a wavelet transform awd\aelet packet denoising. Which denoising has smaller
RMS, and which sounds better? Explain why.

6.2.6 Produce atable like Table 6.2, but use Bwat.omp image.
6.2.7 Produce a table like Table 6.2, but use &idield.bmp image.
6.2.8 Produce a table like Table 6.2, but use Beppers.omp image.

6.2.9 Compare J2K, ASWDR, and WSQ methods for compresSiggrprint_1.bmp at10 : 1 compression
ratio. By compare we mean in terms of PSNR and subjectivaaVisspection of both the whole images, and zooms
about the coordinatg®56, 256).° Which method produces the best results?

6.2.10 Repeat the previous exercise, but use 20:1 compression.
6.2.1T Repeat Exercise 6.2.9, but use #ingerprint_2.bmp image and 128, 128) as zoom coordinates.

6.2.17 Repeat Exercise 6.2.10, but use Biegerprint_2.bmp image and 128, 128) as zoom coordinates.

Section 6.3

Example 6.3.1 [Figure 6.3] The graph in (a) was obtained by plotting

2pi(1-2pi(u/w)"2)e™{-pi(u/w) 2}a/w
\w=1/16\u=ax\a=2"(m/6)
\m=0

over the interval—0.5, 0.5] using4096 points. The top graph in (b) was then obtained by selectragsform/Fourier,
clicking thePlot button, and retaining only the first graph plotted (the reat pf the DFT, since the imaginary part is
essentially zero) and changing theinterval to[—75, 75]. The rest of the graphs in (b) were obtained by successively
plotting the formula above (changitign=0 to\m=2,\m=4,...,\m=8), and then plotting Fourier transforms.

Example 6.3.2 [Figure 6.4] The image in (a) was obtained by plotting

sin(40pi x)e"{-100pi (x-.2)"2}+
[sin(40pi x)+2cos(160pi x)]e™{-50pi (x-.5)"2}
+ 2sin(160pi x)e™{-100pi(x-.8)"2}

6The J2K compression can be done withAGEANALYZER, and its decompression saved abrap file for computing PSNR witHFAWAY .
Similarly, the WSQ compression can be done with WS@WER.
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over the interval0, 1] using2048 points, and then selectir§calogram/Analysiand computing a Mexican hat scalo-
gram withWidthspecified ad/16. The image in (b) was obtained by plotting

sumk(100u(u-.1)(u+.2)(-.2<u<.1)(abs(k-1)>.5))
+.1sin(12pi v)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x-2

over the interval—5, 5] using 1024 points, changing the plotting style tanes, and then computing a Mexican hat
scalogram withVidthspecified aP.

6.3.X Compute Blackman windowed spectrograms for the followhrgé shifted and scaled Mexican hat wavelets:

2pi(1-2pi(u/w)"2)e{-pi(u/w) 2}a/w \w=1/16\u=a(x+.25 Na=2"(m/6) \m=8
2pi(1-2pi(u/w)"2)e™{-pi(u/w)2}a/w \w=1/16\u=ax\a=2" (m/6) \m=32
2pi(1-2pi(u/w) 2)e {-pi(u/w) 2}a/w \w=1/16\u=a(x-.25 Na=2"(m/6) \m=16

over the interval[—0.5,0.5] using 1024 points [and displaying the spectrograms widisplay stylesetting Linear
(global)]. How do these spectrograms relate to the time and frequeeoymposition given by a Mexican hat CWT?

6.3.7 For the following test signal

[sin(80pi x)-cos(40pi x)]e™{-100pi (x-.2)"2}+
[sin(160pi x) + cos(80pi x)]le{-50pi (x-.5)"2}
+ sin(80pi x)e™{-100pi(x-.8)"2}

graphed ovef0, 1] using4096 points, plot its Mexican hat scalogram usifigctaves42 voices, and a width df.05.
Explain the relationship between the features of the scafogand the frequencies of the sine and cosine functions in
the signal’s formula.

6.3.3 For the following simulated ECG signall

sumk(100u(u-.1)(u+.2)(-.2<u<.1l)(abs(k+1)>.5))
+.1sin(16pi V)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x+2

graphed over the intervgt-5, 5] using8192 points, plot its Mexican hat scalogram using 8 octaves, li6egp and
width 2.

6.3.4 For the following simulated ECG signal

sumk(100u(u-.1)(u+.2)(-.2<u<.1))
+.2sin(16pi V)(-.2<v<.1)
\u = x-2k \k=-2,2 \v=x+2

graphed over the interval-5, 5] using8192 points, plot its Mexican hat scalogram using 8 octaves, li6eg and
width 2.

Section 6.4

Example 6.4.1 [Figure 6.5] The image in (a) was produced by graphing the same functionisample 6.3.2, then
selectingAnalysis/Scalograpand choosing &abor (complexycalogram. The scalogram was plotted usirartaves
and 16 voices, and a width parameter bfand freq. parameter &. The image in (b) was obtained by computing a
Blackman windowed spectrogram of the signal.
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Example 6.4.2 [Figure 6.6] The image in (a) was obtained by loading the sound@idi(Jim).wav and com-
puting a Blackman windowed spectrogram. The image in (b)esasputed using &abor (complexkcalogram using
4 octaves and6 voices, and a width parameter bf8 and freq. parameter ap.

Example 6.4.3 [Figure 6.7] The graph in (a) was obtained by loading the sound3ad#(Jim).wav , then chang-
ing the X -interval t0.09, .09 + .371519274376417/2, and then clipping out the displayed graph (right-clickamgd
selectingClip from the popup menu). The spectrum in (b) was obtained frgrbyaelectinglransforms/Fourierand
choosing the optiondmp/Phasend interval typd0, L] — [—A, A]. Removing the phase graph (graph 2) from the
resulting transform, and changing theinterval to[0, 992] andY -interval to[—1, 3].

Example 6.4.4 [Figure 6.8] The image in (a) was obtained by computing a Blackman windospectrogram of the
sound file

Buenos_aires_Madonna_lyrics.wav

The image in (b) was obtained by computing a scalogram of Ggigor (complexysing3 octaves and5 voices, and
a width parameter di.1 and freq. parameter @0, and changing the display styleltog (global)

6.4. Compute spectrograms and scalograms for the word “caliihfeach of the following 10 recordings:
call back l.wav, call back 2.wav, ... , call back 10.wav.

Can you formulate any conjectures about formants of varspeskers (e.g. male/female, or Native English/Foreign,
etc.)?

6.4.2 Do atime-frequency analysis of the sound cliiaiya chaiya clip.wav . Does the Multiresolution Prin-
ciple apply here? [The spectrogram is best viewed witltDACITY. The Gabor (complexscalograms from AWAV ,
will need to be constructed from clips of the audio file usihg following settings: 3 Octaves, 32 voices, width5,
and freq.10.]

Section 6.5

Example 6.5.1 [Figure 6.9] The spectrogram in part (a) of the figure was generated byirlgathe sound file
el_matador_percussion_clip.wav and then selectingnalysis/Spectrograimnd performing a Blackman win-
dowed spectrogram with the default settings. To producéhgd¥ound file

Buenos Aires percussion clip.wav
was processed in a similar way.

Example 6.5.2 [Figure 6.10] The processed spectrogram at the top of the figure was prddiware the spectrogram
shown in Figure 6.9(a) of the Primer (see the example jusudised) by selectinGraph/Plotand then plotting the
formula

g1(2500 < y < 4500)
The pulse train shown at the bottom was then generated bstisgl&raphand then choosinBercussion scalogram.

Example 6.5.3 [Figure 6.11] The percussion scalogram was generated from the pulseggagrated by the method
described in the previous example. You seleGiador (complexjype of scalogram and then enter the following data:

Octaves: 4 Voices: 64

Width: 0.5 Freq.. 0.5
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and plot the scalogram.

Example 6.5.4 [Figure 6.12] The percussion scalogram in this figure was generated inoll@ving way. First,
the Blackman-windowed spectrogram of the soundBilenos Aires percussion clip.wav was produced.
Second, from the spectrogram menu se@e&ph/Plotand plot the following function:

g1(2000 < y < 3000)

Third, selectGraph/Percussion scalografmom the spectrogram menu. Finally, in the scalogram forat tpens up,
you specify aGabor (complexjype of scalogram, enter the following data

Octaves: 5 Voices: 51

Width: 2 Freq.: 1
and plot the scalogram.
6.5.1° Use the percussion scalogram method to analyze the rhyttime imudio fileConga_solo_clip.wav
6.5.F Use the percussion scalogram method to analyze the rhyttime iaudio filebrazil_clip.wav

6.5.3 Use the percussion scalogram method to analyze the rhyttive mudio fileorazil_medley_clip.wav
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Solutions to selected exercises
Chapter 2

211 (@) (a'|d') = (3v2,6v2,3v2]| —v2,0,v/2) (c)(a'|d!) = (1.5v/2,3v2,2v2,v2| — 0.5/2,0,0,0)
212 (a)f =(2,2,0,-2,3,3,0,—2) (c)f=(5,1,1,3,3,1,0,0)
213 (a)f =(2,2,3,3,4.5,5.5,6,6), largest error .5.  (c)f = (0,0, -2, -2, —1,—1,2,2), largest error 2.

2.1.5 (b) The original signal and its 1-level Haar transform arevahin Figure 12.

0.005 0.005
0.003 0.003
—0.003 —0.003
—0.005 —0.005
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
(a) Signal (b) 1-level Haar transform

Figure 12
Solution to 2.1.5(b).

221 (a)€y =108,Eq41 =4, & =112 =108 + 4. (C€) a1 =32.5,E41 = 0.5, =33 =325+0.5.
223 (a)12.5% (c) 37.5%

225 (D) &y =1.91685--- x 1074, Eqr = 1.86057 - -- x 1076, & = 1.935457 x 10™* = &,1 + E4: to an accuracy
slightly better thar x 10~19.

2.2.7 (b) Thel-level,2-level, and3-level transforms are respectively:
(al |d') = (—~16V/2,8V2,48V/2,96v/2 | 0, —24V/2,0,0)
(a2 |d? |d') = (—8,72 | — 24, —48 |0, —241/2,0,0)
(a®|a? |d? |d') = (32v2 | —40V2 | — 24, —48 |0, —24V/2,0,0).

231 (a)-2 (c)8
2.3.5 (0.5v2,0.5v/2,0,0,...,0) and(0.5v/2, —0.5v/2,0,0, . ..,0)

241 (@f+g=(3,517),.f—g=

( 6,9,6,12), —2g = (-2, —4,2,—6)
©)f+g=1(0,1,1,2,0,2),f —g=(-2,-3,1,0,2, f

=(-3,-3,3,3,3,3), —2g = (—2,—4,0,-2,2, -2)

242 (aQ)A' =(3,3,6,6,3,3), D' = (—1,1,0,0,1, 1)
() (@)A! = (1.5,1.5,3,3,2,2,1,1), D! = (=0.5,0.5,0,0,0,0,0,0)
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244 (aQ)Al =(1.5,15,1,1,3,3,3.5,3.5), D! = (0.5,—0.5,2, -2, —1,1,—0.5,0.5)
(€)A! = (1.5,1.5,—1,-1,3.5,3.5,2,2), D! = (=0.5,0.5,0,0,0.5,—0.5,0,0)

2.4.6 (a)A2 = (1.25,1.25,1.25,1.25,3.25,3.25,3.25,3.25), D2 = (.25, .25, —.25, — .25, — .25, —.25, .25, .25)
(c) A% = (.25, .25, .25, .25, 2.75,2.75,2.75,2.75), D2 = (1.25,1.25, —1.25, —1.25,0.75,0.75, —0.75, —0.75)

2.5.1 The graphs are shown in Figure 13 bel6&transform values were used to produce the signal in Figui@)13
hence al9.7 : 1 compression ratio. Any threshold less thah will produce at leas9.99% of energy, usind).49
we obtained a signal that has a maximum errod.@5. [Note: since the signal is integer-valued, this error ddug
completely eliminated by rounding to nearest integer.]

7 10
|35 5
— — — — —0 0
- -3.5 —5
-7 —10
0 2.5 5 7.5 10 0 2.5 5 7.5 10
(@ (b)
1.01 7
1.005 |35
1 — — — — —0
0.995 -3.5
0.99 -7
0 2.5 5 7.5 10 0 2.5 5 7.5 10

©

(d

Figure 13
(a) Signal(b) 10-level Haar transform, (c) energy map of Haar tansform, (d) 19.7:1 compression of Signal, 100% of energy.

2.5.2 The graphs are shown in Figure 14 below. To O¥t% energy requireall of the coefficients (no compression)

so we did not graph it. Instead, we found that a thresholtd f5 will retain 65 transform values (a compression ratio
of 15.8:1) and produces the graph shown in Figure 14(d). TaAeimum error between this signal and the original
signal is0.604.

2.5.3 For (a) we get a sup-norm difference @f’4, while for (b) we get2.66 x 10715, Clearly the series for (b)
performs the best. The reason is that the function in (b) ieep fnction so all of the Haar transform values are
0 except for a small number corresponding to Haar waveletssw/sapports overlap the jumps in the step function.
Those relatively few high-magnitude coefficients are atluded by specifying the highe50, hence the extremely
small error (due to the roundoff error that always occurdwligital calculations). The function in (a) is not a step
function so it has many more non-zero transform values.
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38 10
19 5
0 0
—19 -5
—38 —10
0 2.5 7.5 10 0 2.5 7.5 10
(a) (b)
1.01 38
1.005 = - 19
1 0
(ﬁ 0.995 —19
0.99 —38
0 2.5 7.5 10 0 2.5 7.5 10
(c) (d
Figure 14

(a) Signal(b) 10-level Haar transform, (c) energy map of Haar tansform, (d) 15.8:1 compression of Signal, 99.99% of energy.

2.6.2 It looks like a sequence of random numbers (just as the sfgmal problem 2.6.1 looks random) and, again
just like the signal from 2.6.1, it sounds like the static tiears in radio transmissions.

2.6.3 Noisy signals are shown for parts (a) and (d) in Figure 15. 8iwoise these signals a thresholddfwas used

in both cases. The denoised signals are shown in the Figure.d&noising for the step function in (a) was the best
(most representative of the original signal). The mainaaas that the underlying signal for (a) is a step functionchhi

is best for Haar transforms.

Chapter 3

311 Vi=a;Vi+aaVi+azVi+a,V]whereeacW!, k = 2,3, 4,isatranslate oV} by 2x (k—1) time-units.
It follows that V! is a translate by units with a support oft units, and therefor&? has a support of( time-units.
V32 = a1 Vi +aaVi+ a3 Vi + Vi and it therefore has a support iif time-units. Because its support begins with
the support oiV1, which is a translation oV} by 4 units, it follows that/;? is a translation o¥/;? by 4 units. Similar
calculations show that, in generd2, has a support of0 time-units and is a translation & by 4(m — 1) time-units.

3.1.3 No, it equal9.896575 . ..
3.1.5 The original signal for (b) and its 1-level Daub4 transfonma shown in Figure

3.1.7 Maximum errors:A! : 2.259 x 104, A% : 1.3890 x 1073, A3 : 5.877 x 1073, A*: 1.572 x 10~2.
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(a) Noisy signal for part (a) (b) Denoising
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(c) Noisy signal for part (d) (d) Denoising
Figure 15

Denoising for Exercise 2.6.3.

0.005 0.005
0.003 0.003
—0.003 —0.003
—0.005 —0.005
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
(a) Signal (b) 1-level Daub4 transform

Figure 16
Solution to 3.1.5(b).

3.1.10 The graphs are shown in Figure 17 below. A thresholgl.&fetainsl7 transform values (a compression ratio
of 60:1) and produces the graph shown in Figure 14(d). Théman error between this signal and the original signal
is 0.9357. [Note: Using 65 transform values, as with the Haar case, vt@imed a maximum error 60874, which is
several times smaller than the maximum errof.6f)4 for the Haar case.]
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Figure 17
(a) Signal(a) 10-level Daub4 transform, (c) energy map of Daub#ansform, (d) 60:1 compression of Signal, 99.99% of energy.

3.2.2 We found that1334877.16 equals both the energy éfand its 3-level Daub4 transform. [Note: energies of
signals are found by selectignalysis/Statisticand computing statistics (which includes the energy) ferdbsired
signal.]

3.2.4 We obtained the following results

Daub4 Haar
(@ 75.6% 721%
(d) 854% 86.7%

3.3.1 We have
9(tam—1+%) = g(tam—1) + g (tam—1)(kR) + g" (t2m—1)(K*h?) + O(h?).

Hence,

£ - W =g(tom 1){B1 + P2+ B3+ Bs}
+ ¢ (tom—1){0B1 + 16 +2+ 265 + - - + 506}
+ 9" (tam-1){0°1 + 1282 + 2283 + - -+ + 5° B} + O(h?)
= O(h%).
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3.3.3 The maximum errors arA! : 3.0078 x 10~°, A2 : 3.5018 x 10~%, A3 : 2.7638 x 1073, A*: 1.4618 x 10~ 2.

3.3.9 The mininum number of terms f®9.99% of energy are

Levels: 1 2 3 4 5 6
Daub4: 335 192 162 161 161 160
Daub6: 334 167 99 90 90 92
Daub8: 333 167 85 68 70 70

3.3.12 The maximum errors arA' : 3.0078 x 1072, A2 : 3.5018 x 104, A3 : 2.7638 x 1073, A* : 1.4618 x 10~2.

3.3.12 The mininum number of terms f®9.99% of energy are

Levels: 1 2 3 4 5 6
Coif6: 334 188 160 156 155 157
Coifl8: 333 168 85 52 55 54
Coif30: 333 168 85 42 44 38

3.3.16 The Coif/ maximum errors areCoif6: 2.4296 x 10~7, Coif12: 2.4842 x 1019, Coif18: 5.5743 x 10713,
Coif24: 3.8137 x 10~13, Coif30: 4.1636 x 10~'3. The Dualy maximum errors ardDaub4: 3.3445 x 10~2, Daub6:
4.3118 x 10~3, Daub8: 5.3033 x 10~3, Daub10: 6.2972 x 10~3, Daub12: 7.2894 x 10—2, Daub14: 8.2789 x 10~3,
Daub16: 9.2653 x 10~3, Daub18: 1.0249 x 10~2, Daub20: 1.1230 x 10~2.

3.4.1(d) The graphs for part (d) are shown in Figure 18. The threshedd wa<2.0, which retained onlyl9 coeffi-
cients of the transform, hencel@24 : 19 ~ 54 : 1 compression ratio. The maximum error wa$411.

3.4.5(d) With 6 levels there was a minimum number of 17 transform \&lue

3.4.7(d) With 7 levels there was a minimum number of 9 transform values

N N

3.5.2 The entropy isy  pilogy(1/pk) = > (1/N)logy N =log, N.
k=1 k=1

3.5.4 Using the rule-of-thumb ofentropy) + 0.5 we obtained these estimates for the sigalfdlfa_2.wav
(which is available from the Exercises webpage of tAa/Rv website): Original signalx~ 11.9 bpp. 13-level Coif30
transform (dead-zone histogramy: 10.3 bpp. 4-level Coif30 transform (with different quantization orettrend and
fluctuation):~ 7.7 bpp.

3.5.6 For problem 3.5.4, using the sigradfalfa_2.wav we obtained these errors.

Sup-norm difference  Rel. 2-Norm difference
13-level (Uniform threshold Valu&/2"16 ) 0.622 5.66 x 1075
4-level (Multiple thresholds Valué/2"16, 1/2712 ) 11.68 1.02 x 1073

Note: for both compressions the sound of the signals wastinduishable from the original recording.

3.6.1(b) The signal and denoised signal (using a thresholtbpiare shown in Figure 19. This was the best of the
denoisings, due to the lack of any large jumps in the signlalega (The denoising for (d) with a threshold i&f was
the next best.)

3.6.4 The RMS error (2-norm difference) for the noisy signal wa$.87 while for the denoised signal it wa§9.60,
a24% reduction.
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Figure 18

(a) Signal, (b) 10-level Daub4 transform, (c) energy map of Daubtransform, 54:1 compression, 99.99% of energy.

80 80
40 40
0 0
—40 —40
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(a) Signal (b) Denoised signal

Figure 19
Solution to 3.6.1(b).

3.7.2 The maximum errors arA! : 1.32 x 107%,A%2:6.15 x 1074, A3:2.31 x 1073,A! : 1.17 x 10~2.

3.7.5 The minimum number of terms are listed in the following table

Levels: 1 2 3 4 5 6
Terms: 335 206 206 233 246 220

53
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3.7.6 To obtain the result we compute
20u”2(1-u)"4 cos(12pi u) \u = x

over the interval0, 1] using16 384 points. Then we perform &levelDD 5/3 (2,2) transform. For this transform
we change th&(-interval to[0, .5] and then plot the function

20u"2(1-u)"4 cos(12pi u) \u = 2x

(note the change frohu = x to\u = 2x ) with the optionAuto-fit notselected (so that th&-interval displayed
remains a0, 0.5]). Finding the Sup-norm difference between these two grgigtds a maximum error f.92 x 10~ 7.

3.8.2 The maximum errors arA! : 2.74 x 107%,A? : 5.36 x 107°, A3 : 7.91 x 107%,A : 9.63 x 1073.
3.8.5 The minimum number of terms are listed in the following table

Levels: 1 2 3 4 5 6
Terms: 333 168 85 64 67 65

3.8.6 To obtain the result we compute
20u”2(1-u)"4 cos(12pi u) \u = x

over the interval0, 1] using16 384 points. Then we perform &level Daub 9/7 transform. For this transform we
change theX-interval to]0, .5] and then plot the function

sqr(2)20u™2(1-u)"4 cos(12pi u) \u = 2x

(note the change froru = x to\u = 2x and the factosqr(2) ) with the optionAuto-fit not selected (so
that theX -interval displayed remains &3, 0.5]). Finding the Sup-norm difference between these two grgjeids a
maximum error of7.08 x 10~ 7.

Chapter 4

4.1.1(a) Thel-level Haar transform array is

4.1.2 (a) The2-level Haar transform array is

—4 1 0 -1

S 9 -3 1
95 =25 -2 1
145 =35 1 -1

1/2 —1/2
4.1.4 W}@V}(Jz —1§2)'
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4.2.1 The PSNR values for the reconstructions of fidield.bmp image are

Method/C.R.| 8:1 16:1 32:1
JPEG 29.3 26.6 23.5
J2K 31.0 279 252
ASWDR 31.4 284 25.7

4.3.2 The PSNRs for the zooms of the compressions are

Method/C.R| 81 16:1 321
JPEG | 30.54 2548 19.86
J2K 33.12 2820 24.42
ASWDR | 3246 27.99 24.54

4.4.1 The quantized transform at thresh@ldés shown in Figure 20(a) and for half-threshaléh (b).

-2 -2 -4 =210 2 -2 —4 -3 -3 -5 -3|]1 3 -3 -5

-4 -4 -6 -4 2 -2 -6 -10||-5 -5 -7 -5| 3 -3 -7 —11

14 28]1-10 8 [ 8 -6 4 8 15 29|-11 9 (9 -7 5 9

22 24(-8 10|18 -4 8 8 23 25(-9 1119 -5 9 9

(a) Threshold® (b) Round to half-threshold

Figure 20
Quantized transforms for Exercise 4.4.1.

445 + + + 4+ 1 1 1 0 1 +
4.5.5 Theimages are shown in Figure 21.

4.5.9 Theimages are shown in Figure 22. If the entire image is inéttesd losslessly, thet87, 044 bytes are needed.
If only the image in (d) is sent (with just ROI lossless), thoety 10, 264 bytes are needed,%.5% savings.

4.6.3 The RD-curve is shown in Figure 23.
4.7.5 The denoisings are shown in Figure 24. We leave the subgeictierpretation of them to the reader.

4.8.2 The edge enhancement is shown in Figure 25.
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(c) 0.5 bpp (16:1 compression) (d) 1.0 bpp (8:1 compression)

Figure 21

lllustration of Progressive Reconstruction. Each image in (b) tod) was computed from a single compressed file (saved &0
bpp). First, (b) is reconstructed, then (c), then (d).

4.8.6 The relative2-norm differences for these images (compared to a 32:1 de@ssion of.ena.pgm ) are

Image| Full Second Third Fourth Fifth
Barb | 0.499 0.467 0.455 0.433 0.379
Zelda | 0.548 0.543  0.537 0.524  0.490
Lena | 0.040 0.015 0.009 0.005 0.002
Barb | 0.609 0.604 0.596 0.579 0.537

Chapter 5

5.1.1 The graphs are shown in Figure 26.
5.1.3 The spectra are shown in Figure 27.

5.2.1 The DFT ofaf + Bg is

N N N
Z(afm + Bgm)e—i%r(m—l)(n—l)/N = a Z fme—iQTr(m—l)(n—l)/N _1_5 Z gme—iZTr(m—l)(nl)/N
m=1 m=1 m=1

= a(Ff), + B(F)n-
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(c) Original with ROI (d) Update of (b) with lossless ROI

Figure 22
lllustration of ROI Property
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Figure 23
Rate-Distortion curves for the Boat . bnp image.
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(c) TAWS denoising (d) TAWS-SPIN denoising

Figure 24
Zooms of denoisings oEl ai ne. bnp image.

5.2.2 We have

(}—f)nJrN fme—i27r(m—1)(n—1+N)/N

I
M=

3
Il

f e—i27r(m—1)(n—1)/N€—i2ﬂ'(m—1)

I
M=

3
I

fme—iZﬂ(m—l)(n—l)/N .1

I
1=

Il
—
Ry
=
3
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(a) Original (b) Edge enhancement

Figure 25
Edge enhancement for Exercise 4.8.2.

8 64
32
‘ ‘ 0
—4 —32
—8 —64
—16 -8 0 8 16 —16 -8 0 8 16
@ (b)
Figure 26
(a) Graph of function. (b) Frequency content.
5.2.3 Fix avalue ofm from 1 to N. We then have
1 N/2—-1 N/2—-1 1N
- +i27(n—1)(m—1)/N _ & 7127r(£ 1)(n—1)/N +z27r(n 1)(m—1)/N
N 2 (Fhue -2 N
=—N/2 n=—N/2
N

N/2-
Z 7127r(€ 1)(n—1)/N 6Jri27r(nfl)('mfl)/N
=1 “NJ2

I
(]
N

2\

N/2-1

:iff N Z 127r(m £)(n—1)/N

=1 —NJ2
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Figure 27
(a) Spectrum of Coif12 scaling signaV3,. (b) Spectrum of Coif12 waveletW 3.

We now simplify the innermost sum in the last line above. # m, then we have

N/2—1 N/2—1

Z ei27r(m,—£)(n—1)/N — Z 60 - N.

n=—N/2 n=—N/2
If £ # m, then we have (using a finite geometric series sum):

N/2—-1 N/2—-1
Z ei27r(m7€)(n71)/N _ Z (eiQﬂ'(mfZ)/N)nfl
n=—N/2 n=—N/2

e—iﬂ'(m—f)e—ﬂﬂ(m—f)/N _ ei-rr(m—Z)e—iQ‘n'(m—Z)/N

1 — ei2m(m—¢)/N
(e—iﬂ'(m—é) _ eiﬂ'(m—é))e—i27r(m—Z)/N

1 _ gi2n(k—0)/N
=0

sincee*27(m—1) have the same value (of eithed or +1). Therefore, we have

N/2—1
i +i27(m—1)(n—1)/N _ .
n=—N/2

and inversion is proved.
5.2.5 Thez-transformisl + z + 22 + 23 and its roots are-1, +i.
5.3.1 The portions of the DFT that correspondAd, D3, D2, andD! are shown in Figure 28.

5.5.3 Before doing normalized correlation, both the text image #e single letter image aievertedin the sense

that black pixels are converted to white pixels and viceaefs to the relation to vision, we know that there are neurons
that respond to darkness in the foreground versus brightngke background, just as there are neurons that respond to
whiteness in the foreground versus darkness in the backdrothese complementary responses of neurons is loosely
analogous to how we can choose to invert the black and whéagaeships for our normalized correlations.

5.6.3 To see the solution, you should consult the article by Saizh(reference [21] for this chapter) where the Daub6
case is discussed in detail.
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-3.5

—16 -8 0 8 16

Figure 28
DFT with parts labelled (e.g. A® labels the DFT portion that corresponds toA?3).

5.7.1 The spectrograms are shown in Figure 29. They are quiteasirhibwever, the Hanning windowed spectrogram
shows a bit more “smearing” (slightly more extensive ligrdygpatches above and below the darker frequency bands).
Engineers refer to this smearing as “leakage.” Becauseshey less leakage, we generally use Blackman windows
for our spectrograms.

1096 1096
3072 3072
2048 2048
— | —
— 1024 | — 1024
| — | —
0.0 0.0
0 0.25 0.5 075 1 o 0.25 0.5 0.75 1

(€Y (b)

Figure 29
(a) Hanning windowed spectrogram. (b) Blackman windowed spectrgram.

5.8.7 The spectrogram is shown in Figure 30. The two diagonal satgaeforming a top of a triangle shaped object
enclosed in the rectangle at bottom left center—is repeatttddifferent sizes and positions in the time-frequency
plane, and is also inverted in a region at its right edge aaihdgverted (over a slightly longer time-scale) at the end
of the spectrogram. All of these structures are even cleartére color version produced byubACITY, and reveal
their full effect when the spectrogram is traced as the eliplayed. This analysis provides further confirmation of our
Multiresolution Principle.

5.9.2 A musical analysis of thevarbler.wav  recording can be found in subsecti®r3 Analysis Ill: A Warbler's
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Figure 30

AUDACITY computed spectrogram ofHappi ness_cl i p. wav.

Songof the articleMusic: a time-frequency approactvailable at

http://www.uwec.edu/walkerjs/media/TFAM.pdf (1)

5.9.4 One solution to selectively amplifying the harp glissandn be found in subsectid3 Synthesis Il: Altering
figure-ground of the articleMusic: a time-frequency approaavailable at the webpage listed in (1). More details on
how FAWAV can be used for this example can be found in the documenrd kdieve in the statement of problem 5.8.2.

Chapter 6

6.1.1 (10,10 —4,—4]0,—2] —2,0)
6.1.3 Wavelet packet serie§83. Wavelet series228.

6.2.1 Using theThresholdchoice for a wavelet and wavelet packet series, with thidsseiting1/2"7:1/2°5 in
both cases, we obtained the following results:

Transform Sig.values Bpp RMS Error
wavelet 1219 0.26 189.5
wavelet packet 1185 0.25 182.2

There are some high-frequency artifacts audible in the cesgons, these are very high compressies®4(1), a lower
compression ratio (using lower threshold settings) wouldaubtedly sound better.

6.2.4 The RMS error between the original and the noisy signdl(ig3.6. We then performed &-level Coif30
transform and applied the thresholdig#j(x)(abs(g1(x))>4000) where we obtained the threshold400 by
visual inspection of the transform. After inverse transforg the thresholded transform, we obtained a denoisedlsign
with RMS error 0f969.1, but there was much less audible noise. Performing the damegholding on &-level Coif30
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wavelet packet transform, we obtained a denoised signhIRNMS error of811.6, which is smaller, and this denoising
sounded better. The wavelet packet denoising was bettaubedhere is a lot of energy within the fluctuations of the
osprey’s call. By performing wavelet transforms on thosettlations we amplify the fluctuations, while at the same
time leaving the noise variance unchanged. That allows foore effective thresholding operation.

6.2.6 The analog of Table 6.2 for tH®oat.omp image is the following:

Transform Bpp Sig.values PSNR
wavelet 0.5 24034 34.12
wavelet packet 0.5 22229 33.17
wavelet 0.25 11557 30.59
wavelet packet 0.25 10646 29.94



